【題目】設 ,曲線y=f(x)在點(1,f(1))處的切線與直線2x+y+1=0垂直.
(1)求a的值;
(2)若x∈[1,+∞),f(x)≤m(x﹣1)恒成立,求m的范圍.
(3)求證:

【答案】
(1)解:

由題設 ,

∴1+a=1,∴a=0


(2)解: ,x∈(1,+∞),f(x)≤m(x﹣1),即

,即x∈(1,+∞),g(x)≤0.

①若m≤0,g'(x)>0,g(x)≥g(1)=0,這與題設g(x)≤0矛盾.

②若m>0方程﹣mx2+x﹣m=0的判別式△=1﹣4m2

當△≤0,即 時,g'(x)≤0.

∴g(x)在(0,+∞)上單調遞減,

∴g(x)≤g(1)=0,即不等式成立.

時,方程﹣mx2+x﹣m=0,其根 , ,

當x∈(1,x2),g'(x)>0,g(x)單調遞增,g(x)>g(1)=0,與題設矛盾.

綜上所述,


(3)解:由(2)知,當x>1時, 時, 成立.

不妨令

所以 ,

累加可得


【解析】(1)求得函數(shù)f(x)的導函數(shù),利用曲線y=f(x)在點(1,f(1))處的切線與直線2x+y+1=0垂直,即可求a的值;(2)先將原來的恒成立問題轉化為 ,設 ,即x∈(1,+∞),g(x)≤0.利用導數(shù)研究g(x)在(0,+∞)上單調性,求出函數(shù)的最大值,即可求得實數(shù)m的取值范圍.(3)由(2)知,當x>1時, 時, 成立.不妨令 ,得出 ,再分別令k=1,2,…,n.得到n個不等式,最后累加可得.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知等差數(shù)列{an}滿足an>1,其前n項和Sn滿足6Sn=an2+3an+2
(1)求數(shù)列{an}的通項公式及前n項和Sn;
(2)設數(shù)列{bn}滿足bn= ,且其前n項和為Tn , 證明: ≤Tn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,橢圓)和圓,已知圓將橢圓的長軸三等分,橢圓右焦點到右準線的距離為,橢圓的下頂點為,過坐標原點且與坐標軸不重合的任意直線與圓相交于點、

(1)求橢圓的方程;

(2)若直線、分別與橢圓相交于另一個交點為點、.

①求證:直線經過一定點;

②試問:是否存在以為圓心,為半徑的圓,使得直線和直線都與圓相交?若存在,請求出實數(shù)的范圍;若不存在,請說明理由。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知為橢圓的右焦點,點上,且軸.

(1)求的方程

(2)過的直線兩點,交直線于點.證明:直線的斜率成等差數(shù)列.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知數(shù)據(jù)a1,a2,…,an的平均數(shù)為a,方差為s2,則數(shù)據(jù)2a1,2a2,…,2an的平均數(shù)和方差分別為(  )

A. a,s2 B. 2a,s2

C. 2a,2s2 D. 2a,4s2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設函數(shù)f(x)=cos(x+ ),則下列結論錯誤的是( )
A.f(x)的一個周期為﹣2π
B.y=f(x)的圖象關于直線x= 對稱
C.f(x+π)的一個零點為x=
D.f(x)在( ,π)單調遞減

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】△ABC的內角A,B,C的對邊分別為a,b,c,已知sinA+ cosA=0,a=2 ,b=2.
(Ⅰ)求c;
(Ⅱ)設D為BC邊上一點,且AD⊥AC,求△ABD的面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=x2﹣2x+a(ex﹣1+e﹣x+1)有唯一零點,則a=( 。
A.﹣
B.
C.
D.1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在直角坐標系中,圓軸負半軸交于點,過點 的直線分別與圓交于兩點.

1,,求的面積;

(2)過點作圓O的兩條切線,切點分別為E,F(xiàn),求;

3,求證直線過定點.

查看答案和解析>>

同步練習冊答案