【題目】如圖,公路圍成的是一塊頂角為的角形耕地,其中,在該塊土地中處有一小型建筑,經(jīng)測量,它到公路的距離分別為,現(xiàn)要過點(diǎn)修建一條直線公路,將三條公路圍成的區(qū)域建成一個(gè)工業(yè)園.
(1)以為坐標(biāo)原點(diǎn)建立適當(dāng)?shù)钠矫嬷苯亲鴺?biāo)系,并求出點(diǎn)的坐標(biāo);
(2)三條公路圍成的工業(yè)園區(qū)的面積恰為,求公路所在直線方程.
【答案】(1) ;(2) .
【解析】
(1)以為坐標(biāo)原點(diǎn), 所在直線為軸,過點(diǎn)且垂直于的直線為軸,建立平面直角坐標(biāo)系.根據(jù)條件求出直線的方程,設(shè)出點(diǎn)坐標(biāo),代點(diǎn)到直線的距離公式即可求出所求;
(2)由(1)及題意設(shè)出直線的方程后,即可求得點(diǎn)的橫坐標(biāo),與點(diǎn)的縱坐標(biāo),由
求得后,即可求解.
(1)以為坐標(biāo)原點(diǎn), 所在直線為軸,過點(diǎn)且垂直于的直線為軸,
建立如圖所示的平面直角坐標(biāo)系
由題意可設(shè)點(diǎn),且直線的斜率為,并經(jīng)過點(diǎn),
故直線的方程為:,
又因點(diǎn)到的距離為,所以,解得或(舍去)
所以點(diǎn)坐標(biāo)為.
(2)由題意可知直線的斜率一定存在,故設(shè)其直線方程為:,
與直線的方程:,聯(lián)立后解得:,
對(duì)直線方程:,令,得,
所以,解得,
所以直線方程為:,即:.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】甲、乙二人參加某體育項(xiàng)目訓(xùn)練,近期的五次測試成績得分情況如圖所示.
(1)分別求出兩人得分的平均數(shù)與方差;
(2)根據(jù)圖和上面算得的結(jié)果,對(duì)兩人的訓(xùn)練成績作出評(píng)價(jià).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知平面直角坐標(biāo)系中,過點(diǎn)的直線l的參數(shù)方程為 (t為參數(shù)),以原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,曲線C的極坐標(biāo)方程為與曲線C相交于不同的兩點(diǎn)M,N.
(1)求曲線C的直角坐標(biāo)方程和直線l的普通方程;
(2)若,求實(shí)數(shù)a的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知,函數(shù).
(1)當(dāng)時(shí),解不等式;
(2)若關(guān)于的方程有兩個(gè)不等的實(shí)數(shù)根,求的取值范圍;
(3)設(shè),若對(duì)任意,函數(shù)在區(qū)間上的最大值與最小值的差不超過1,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知,直線分別交軸、軸的正半軸于、兩點(diǎn),為坐標(biāo)原點(diǎn).
(1)若直線方程為(),且,求的值;
(2)若直線經(jīng)過點(diǎn),設(shè)的斜率為,為線段的中點(diǎn),求的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知p:x2-7x+10<0,q:x2-4mx+3m2<0,其中m>0.
(1)若m=3,p和q都是真命題,求x的取值范圍;
(2)若p是q的充分不必要條件,求實(shí)數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知是定義域?yàn)?/span>的奇函數(shù),且當(dāng)時(shí), ,設(shè) “”.
(1)若為真,求實(shí)數(shù)的取值范圍;
(2)設(shè)集合與集合的交集為,若為假, 為真,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com