【題目】已知函數(shù).
(1)利用絕對值及分段函數(shù)知識,將函數(shù)的解析式寫成分段函數(shù);
(2)在給出的坐標(biāo)系中畫出的圖象,并根據(jù)圖象寫出函數(shù)的單調(diào)區(qū)間和值域.
【答案】(1)------3分
(2)圖象如右圖所示 --------------6分
單調(diào)增區(qū)間為
單調(diào)減區(qū)間為--------------9分
值域為:
【解析】
本試題主要是考查了函數(shù)圖像以及函數(shù)單調(diào)性的運用。
(1)首先去掉絕對值符號,然后。
(2)利用函數(shù)解析式作圖
(3)根據(jù)圖像觀察可知函數(shù)的單調(diào)區(qū)間和值域。
解:(1)------3分
(2)圖象如右圖所示
--------------6分
單調(diào)增區(qū)間為
單調(diào)減區(qū)間為--------------9分
值域為:--------------12分
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在外接圓直徑為1的△ABC中,角A,B,C的對邊分別為a,b,c,設(shè)向量 =(a,cosB), =(b,cosA),且 ∥ , ≠ .
(1)求sinA+sinB的取值范圍;
(2)若abx=a+b,試確定實數(shù)x的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知在直角坐標(biāo)系中,曲線的參數(shù)方程為(為參數(shù));在極坐標(biāo)系(與直角坐標(biāo)系取相同的單位長度,且以原點為極點,以軸正半軸為極軸)中,直線的方程為.
(1)求曲線的普通方程和直線的直角坐標(biāo)方程;
(2)求直線被曲線截得的弦長.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若將函數(shù) 的圖象向左平移φ(φ>0)個單位,所得圖象關(guān)于原點對稱,則φ最小時,tanφ=( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,平面中兩條直線和相交于點O,對于平面上任意一點M,若x,y分別是M到直線和的距離,則稱有序非負實數(shù)對(x,y)是點M的“距離坐標(biāo)”.已知常數(shù)p≥0,q≥0,給出下列三個命題:
①若p=q=0,則“距離坐標(biāo)”為(0,0)的點有且只有1個;
②若pq=0,且p+q≠0,則“距離坐標(biāo)”為(p,q)的點有且只有2個;
③若pq≠0則“距離坐標(biāo)”為(p,q)的點有且只有4個.
上述命題中,正確命題的是______.(寫出所有正確命題的序號)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】數(shù)列中,在直線.
(1)求數(shù)列{an}的通項公式;
(2)令,數(shù)列的前n項和為.
(ⅰ)求;
(ⅱ)是否存在整數(shù)λ,使得不等式(-1)nλ< (n∈N)恒成立?若存在,求出λ的取值的集合;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】學(xué)校對校園進行綠化,移栽香樟和桂花兩種大樹各2株,若香樟的成活率為,桂花的成活率為,假設(shè)每棵樹成活與否是相互獨立的.求:
(Ⅰ)兩種樹各成活一株的概率;
(Ⅱ)設(shè)ξ表示兩種樹成活的總株數(shù),求ξ的分布列及數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】因金融危機,某公司的出口額下降,為此有關(guān)專家提出兩種促進出口的方案,每種方案都需要分兩年實施。若實施方案一,預(yù)計第一年可以使出口額恢復(fù)到危機前的倍、倍、倍的概率分別為、、;第二年可以使出口額為第一年的倍、倍的概率分別為、。若實施方案二,預(yù)計第一年可以使出口額恢復(fù)到危機前的倍、倍、倍的概率分別為、、;第二年可以使出口額為第一年的倍、倍的概率分別為、。實施每種方案第一年與第二年相互獨立。令表示方案實施兩年后出口額達到危機前的倍數(shù)。
(1)寫出的分布列;
(2)實施哪種方案,兩年后出口額超過危機前出口額的概率更大?
(3)不管哪種方案,如果實施兩年后出口額達不到、恰好達到、超過危機前出口額,預(yù)計利潤分別為萬元、萬元、萬元,問實施哪種方案的平均利潤更大?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com