【題目】據(jù)報(bào)道,某公司的32名職工的月工資(單位:元)如下:
職務(wù) | 董事長(zhǎng) | 副董事長(zhǎng) | 董事 | 總經(jīng)理 | 經(jīng)理 | 管理 | 職員 |
人數(shù) | 1 | 1 | 2 | 1 | 5 | 3 | 20 |
工資 | 5 500 | 5 000 | 3 500 | 3 000 | 2 500 | 2 000 | 1 500 |
(1)求該公司職工工資的平均數(shù)、中位數(shù)、眾數(shù).(精確到1元)
(2)假設(shè)副董事長(zhǎng)的工資從5 000元提升到20 000元,董事長(zhǎng)的工資從5 500元提升到30 000元,那么新的平均數(shù)、中位數(shù)、眾數(shù)分別是多少?(精確到1元)
(3)你認(rèn)為哪個(gè)統(tǒng)計(jì)量更能反映這個(gè)公司員工的工資水平?結(jié)合此問題談一談你的看法.
【答案】(1)詳見解析;(2)詳見解析;(3)詳見解析.
【解析】試題分析:(1)根據(jù)平均數(shù)的計(jì)算公式,中位數(shù)和眾數(shù)的概念呢,即可得到該公司職工的平均數(shù)和中位數(shù)、眾數(shù)的值.
(2)根據(jù)平均數(shù)的計(jì)算公式,中位數(shù)和眾數(shù)的概念呢,即可得到公司副董事長(zhǎng)的平均數(shù)和中位數(shù)、眾數(shù)的值.
(3)中位數(shù)或眾數(shù)均能反映該公司員工的工資水平,因?yàn)楣局猩贁?shù)人的工資額與大多數(shù)人的工資額差別較大,平均數(shù)不能反映這個(gè)公司員工的工資水平.
試題解析:
(1)平均數(shù)為=≈2 091(元).
中位數(shù)是1 500元,眾數(shù)是1 500元.
(2)平均數(shù)為=≈3 288(元).
中位數(shù)是1 500元,眾數(shù)是1 500元.
(3)在這個(gè)問題中,中位數(shù)或眾數(shù)均能反映該公司員工的工資水平,因?yàn)楣局猩贁?shù)人的工資額與大多數(shù)人的工資額差別較大,這樣導(dǎo)致平均數(shù)與中位數(shù)偏差較大,所以平均數(shù)不能反映這個(gè)公司員工的工資水平.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知點(diǎn)A、B、C的坐標(biāo)分別為A(3,0)、B(0,3)、C(cosα,sinα),α∈(,).
(1)若||=||,求角α的值;
(2)若·,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】從1,2,3,4,…,30這30個(gè)自然數(shù)中任選1個(gè)數(shù),求下列事件的概率:
(1)取出的數(shù)為偶數(shù);
(2)取出的數(shù)能被3整除;
(3)取出的數(shù)能被5整除;
(4)取出的數(shù)大于8;
(5)取出的數(shù)大于8或是偶數(shù);
(6)取出的數(shù)能被3或5整除;
(7)取出的數(shù)是能被3整除的偶數(shù);
(8)取出的數(shù)是偶數(shù)或能被5整除.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知在( ﹣ )n的展開式中,第6項(xiàng)為常數(shù)項(xiàng).
(1)求n;
(2)求含x2項(xiàng)的系數(shù);
(3)求展開式中所有的有理項(xiàng).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)據(jù)x1,x2,x3,…,xn是普通職工n(n≥3,n∈N*)個(gè)人的年收入,設(shè)這n個(gè)數(shù)據(jù)的中位數(shù)為x,平均數(shù)為y,方差為z,如果再加上世界首富的年收入xn+1,則這n+1個(gè)數(shù)據(jù)中,下列說法正確的是
A. 年收入平均數(shù)大大增大,中位數(shù)一定變大,方差可能不變
B. 年收入平均數(shù)大大增大,中位數(shù)可能不變,方差變大
C. 年收入平均數(shù)大大增大,中位數(shù)可能不變,方差也不變
D. 年收入平均數(shù)可能不變,中位數(shù)可能不變,方差可能不變
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】古希臘杰出的數(shù)學(xué)家丟番圖的墓碑上有這樣一首詩:
這是一座古墓,里面安葬著丟番圖.
請(qǐng)你告訴我,丟番圖的壽數(shù)幾何?
他的童年占去了一生的六分之一,
接著十二分之一是少年時(shí)期,
又過了七分之一的時(shí)光,他找到了自己的終身伴侶.
五年之后,婚姻之神賜給他一個(gè)兒子,
可是兒子不濟(jì),只活到父親壽數(shù)的一半,就匆匆離去.
這對(duì)父親是一個(gè)沉重的打擊,
整整四年,為失去愛子而悲傷,
終于告別了數(shù)學(xué),離開了人世.
試用循環(huán)結(jié)構(gòu),寫出算法分析和算法程序.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)的定義域?yàn)閇0,2],則函數(shù)g(x)= 的定義域?yàn)椋?/span> )
A.[0,1)∪(1,4]
B.[0,1)
C.(﹣∞,1)∪(1,+∞)
D.[0,1)∪(1,2]
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】函數(shù)的圖象與軸交于點(diǎn),周期是.
(1)求函數(shù)解析式,并寫出函數(shù)圖象的對(duì)稱軸方程和對(duì)稱中心;
(2)已知點(diǎn),點(diǎn)是該函數(shù)圖象上一點(diǎn),點(diǎn)是的中點(diǎn),當(dāng) , 時(shí),求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)若函數(shù)在區(qū)間上存在零點(diǎn),求實(shí)數(shù)的取值范圍;
(2)當(dāng)時(shí),若對(duì)任意的,總存在,使成立,求實(shí)數(shù)的取值范圍;
(3)若的值域?yàn)閰^(qū)間,是否存在常數(shù),使區(qū)間的長(zhǎng)度為?若存在,求出的值;若不存在,請(qǐng)說明理由.(注:區(qū)間的長(zhǎng)度為)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com