已知函數(shù)
(1)求f(x)的定義域和值域;
(2)證明函數(shù)在(0,+∞)上是減函數(shù).
【答案】分析:(1)根據(jù)使函數(shù)的解析式有意義的原則,我們易求出函數(shù)的解析式,根據(jù)反比例函數(shù)的性質(zhì),我們易求出函數(shù)的值域;
(2)任取區(qū)間(0,+∞)上兩個(gè)任意的實(shí)數(shù)x1,x2,且x1<x2,我們作差f(x1)-f(x2),并判斷其符號(hào),進(jìn)而根據(jù)函數(shù)單調(diào)性的定義,可得到結(jié)論.
解答:解:(1)要使函數(shù)的解析式有意義
自變量應(yīng)滿足x≠0
故f(x)的定義域?yàn)椋?∞,0)∪(0,+∞)
由于≠0,則-2≠-2
故f(x)的值域?yàn)椋?∞,-2)∪(-2,+∞)
(2)任取區(qū)間(0,+∞)上兩個(gè)任意的實(shí)數(shù)x1,x2,且x1<x2,
則x1>0,x2>0,x2-x1>0,
則f(x1)-f(x2)=()-()=-=>0
即f(x1)>f(x2
故函數(shù)在(0,+∞)上是減函數(shù)
點(diǎn)評(píng):本題考查的知識(shí)點(diǎn)是函數(shù)單調(diào)性的判斷與證明,函數(shù)的定義域及其求法,函數(shù)的值域,其中熟練掌握基本初等函數(shù)的定義域,值域,及函數(shù)單調(diào)性的證明方法是解答本題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年浙江省杭州市富陽(yáng)市場(chǎng)口中學(xué)高三(上)8月月考數(shù)學(xué)試卷(理科)(解析版) 題型:解答題

已知函數(shù)
(1)求f(x)的最大值及取得最大值時(shí)的x集合;
(2)設(shè)△ABC的角A,B,C的對(duì)邊分別為a,b,c,且a=1,f(A)=0.求b+c的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年北京市海淀區(qū)高一(上)期中數(shù)學(xué)試卷(解析版) 題型:解答題

已知函數(shù)
(1)求f(f(3))的值;
(2)判斷函數(shù)在(1,+∞)上單調(diào)性,并用定義加以證明.
(3)當(dāng)x取什么值時(shí),的圖象在x軸上方?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年江蘇省常州高級(jí)中學(xué)高三(上)期中數(shù)學(xué)試卷(理科)(解析版) 題型:解答題

已知函數(shù)
(1)求f(x)的最小正周期和值域;
(2)若x=x為f(x)的一個(gè)零點(diǎn),求sin2x的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年福建省莆田市仙游一中高三(上)期中數(shù)學(xué)試卷(理科)(解析版) 題型:解答題

已知函數(shù)
(1)求f(x)的最小正周期;
(2)求f(x)的單調(diào)遞減區(qū)間;
(3)函數(shù)f(x)的圖象經(jīng)過怎樣的平移才能使其對(duì)應(yīng)的函數(shù)成為奇函數(shù)?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011年江蘇省連云港市贛榆高級(jí)中學(xué)高三3月調(diào)研數(shù)學(xué)試卷(解析版) 題型:解答題

已知函數(shù)
(1)求f(x)的最小正周期及對(duì)稱中心;
(2)若,求f(x)的最大值和最小值.

查看答案和解析>>

同步練習(xí)冊(cè)答案