【題目】已知函數(shù).

1)當(dāng)時,求的單調(diào)區(qū)間;

2)求函數(shù)的極值;

3)若函數(shù)有兩個零點,求a的范圍.

【答案】1)單調(diào)遞增區(qū)間為,單調(diào)遞減區(qū)間為2)答案不唯一,具體見解析(3

【解析】

1)當(dāng)時,求導(dǎo)得出,令導(dǎo)函數(shù)大于0和小于0,即可求出的單調(diào)區(qū)間;

2)求導(dǎo)得,,分類討論當(dāng)時,利用導(dǎo)函數(shù)求出的單調(diào)性,結(jié)合單調(diào)性可求出函數(shù)的極值;

3)由(2)可知當(dāng)時,上單調(diào)遞增,不可能有兩個零點;當(dāng)時,函數(shù)有極大值,令,,,求出的單調(diào)區(qū)間和最小值,則根據(jù)題意討論當(dāng)和當(dāng)時存在另外一個零點,構(gòu)造新函數(shù),通過新函數(shù)的單調(diào)性和最值,結(jié)合分類討論思想,即可求出函數(shù)有兩個零點時,求a的范圍.

1.

,由.

所以的單調(diào)遞增區(qū)間為,單調(diào)遞減區(qū)間為.

2,

當(dāng)時,,上單調(diào)遞增,無極值;

當(dāng)時,,,上單調(diào)遞增;

,上單調(diào)遞減;

函數(shù)有極大值,無極小值.

3)由(2)可知當(dāng)時,上單調(diào)遞增,不可能有兩個零點;

當(dāng)時,函數(shù)有極大值

,,,

,上單調(diào)遞減;

上單調(diào)遞增;

函數(shù)有最小值.

要使函數(shù)有兩個零點,必須滿足,

下面證明:時,函數(shù)有兩個零點.

因為,所以下面證明還有另一個零點.

①當(dāng)時,,

,

上單調(diào)遞減,,則

所以上有零點,又上單調(diào)遞減,

所以上有唯一零點,從而有兩個零點.

②當(dāng)時,,,

易證,可得,

所以上有零點,又上單調(diào)遞減,

所以在在上有唯一零點,從而有兩個零點.

綜上,a的取值范圍是.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某調(diào)查機構(gòu)對全國互聯(lián)網(wǎng)行業(yè)進行調(diào)查統(tǒng)計,得到整個互聯(lián)網(wǎng)行業(yè)從業(yè)者年齡分布餅狀圖,90后從事互聯(lián)網(wǎng)行業(yè)崗位分布條形圖,則下列結(jié)論中不正確的是(

注:90后指1990年及以后出生,80后指1980-1989年之間出生,80前指1979年及以前出生.

A.互聯(lián)網(wǎng)行業(yè)從業(yè)人員中90后占一半以上

B.互聯(lián)網(wǎng)行業(yè)中從事技術(shù)崗位的人數(shù)超過總?cè)藬?shù)的

C.互聯(lián)網(wǎng)行業(yè)中從事運營崗位的人數(shù)90后比80前多

D.互聯(lián)網(wǎng)行業(yè)中從事技術(shù)崗位的人數(shù)90后比80后多

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)橢圓的左、右焦點為,,右頂點為,上頂點為.已知.

(Ⅰ)求橢圓的離心率;

(Ⅱ)設(shè)為橢圓上異于其頂點的一點,以線段為直徑的圓經(jīng)過點,經(jīng)過原點的直線與該圓相切.求直線的斜率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的左、右焦點分別為F1F2,過點F1的直線與C交于AB兩點.ABF2的周長為,且橢圓的離心率為.

1)求橢圓C的標(biāo)準(zhǔn)方程:

2)設(shè)點P為橢圓C的下頂點,直線PA,PBy2分別交于點M,N,當(dāng)|MN|最小時,求直線AB的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在棱長為的正方體中,OAC的中點,E是線段D1O上一點,且D1E=λEO.

(1)若λ=1,求異面直線DECD1所成角的余弦值;

(2)若平面CDE平面CD1O,λ的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖1,等腰梯形ABCD中,,,,OBE中點,FBC中點.將沿BE折起到的位置,如圖2.

1)證明:平面;

2)若平面平面BCDE,求點F到平面的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某公司為評估兩套促銷活動方案(方案1運作費用為5/件;方案2的運作費用為2元件),在某地區(qū)部分營銷網(wǎng)點進行試點(每個試點網(wǎng)點只采用一種促銷活動方案),運作一年后,對比該地區(qū)上一年度的銷售情況,制作相應(yīng)的等高條形圖如圖所示.

1)請根據(jù)等高條形圖提供的信息,為該公司今年選擇一套較為有利的促銷活動方案(不必說明理由);

2)已知該公司產(chǎn)品的成本為10/件(未包括促銷活動運作費用),為制定本年度該地區(qū)的產(chǎn)品銷售價格,統(tǒng)計上一年度的8組售價(單位:元/件,整數(shù))和銷量(單位:件)如下表所示:

售價

33

35

37

39

41

43

45

47

銷量

840

800

740

695

640

580

525

460

①請根據(jù)下列數(shù)據(jù)計算相應(yīng)的相關(guān)指數(shù),并根據(jù)計算結(jié)果,選擇合適的回歸模型進行擬合;

②根據(jù)所選回歸模型,分析售價定為多少時?利潤可以達(dá)到最大.

52446.95

13142

122.89

124650

(附:相關(guān)指數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】棉花的優(yōu)質(zhì)率是以其纖維長度來街量的,纖維越長的棉花晶質(zhì)越高.棉花的品質(zhì)分類標(biāo)準(zhǔn)為:纖維長度小于等于的為粗絨棉,纖維長度在的為細(xì)絨棉,纖維長度大于的為長絨棉,其中纖維長度在以上的棉花又名軍海1”.某采購商從新疆某一棉花基地抽測了根棉花的纖維長度,得到數(shù)據(jù)如下圖頻率分布表所示:

纖維長度

根數(shù)

1)若將頻率作為概率, 根據(jù)以上數(shù)據(jù),能否認(rèn)為該基地的這批棉花符合長絨棉占全部棉花的以上的要求?

2)用樣本估計總體, 若這批榨花共有,基地提出了兩種銷售方案給采購商參考.方案一:不分等級賣出,每千克按元計算,方案二:棉花先分等級再銷售,分級后不同等級的棉花售價如下表:

纖維長度

售價

從來購商的角度,請你幫他決策一下該用哪個方案.

3)用分層抽樣的方法從長絨棉中抽取6根棉花,再從此根棉花中抽取兩根進行檢驗.求抽到的兩根棉花只有一根是軍海1的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】[選修4-4:坐標(biāo)系與參數(shù)方程]

在直角坐標(biāo)系中,曲線的參數(shù)方程為是參數(shù)),以坐標(biāo)原點為極點,軸正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.

(1)求曲線的普通方程和曲線的直角坐標(biāo)方程;

(2)設(shè)曲線經(jīng)過伸縮變換得到曲線,是曲線上任意一點,求點到曲線的距離的最大值.

查看答案和解析>>

同步練習(xí)冊答案