【題目】已知函數f(x)=lnx﹣ .
(1)當a>0時,判斷f(x)在定義域上的單調性;
(2)若f(x)在[1,e]上的最小值為 ,求a的值.
【答案】
(1)解:函數的定義域為(0,+∞),且f′(x)=
∵a>0,∴f′(x)>0
∴f(x)在定義域上單調遞增
(2)解:由(1)知,f′(x)=
①若a≥﹣1,則x+a≥0,即f′(x)≥0在[1,e]上恒成立,此時f(x)在[1,e]上為增函數
∵f(x)在[1,e]上的最小值為 ,
∴f(x)min=f(1)=﹣a= ,
∴a=﹣ (舍去)
②若a≤﹣e,則x+a≤0,即f′(x)≤0在[1,e]上恒成立,此時f(x)在[1,e]上為減函數,
∴f(x)min=f(e)=1﹣ = ,∴a=﹣ (舍去).
③若﹣e<a<﹣1,令f′(x)=0,得x=﹣a.
當1<x<﹣a時,f′(x)<0,∴f(x)在(1,﹣a)上為減函數;
當﹣a<x<e時,f′(x)>0,∴f(x)在(﹣a,e)上為增函數,
∴f(x)min=f(﹣a)=ln(﹣a)+1= ,∴a=﹣ .
綜上可知:a=﹣
【解析】(1)確定函數的定義域,根據f′(x)>0,可得f(x)在定義域上的單調性;(2)求導函數,分類討論,確定函數f(x)在[1,e]上的單調性,利用f(x)在[1,e]上的最小值為 ,即可求a的值.
【考點精析】通過靈活運用利用導數研究函數的單調性和函數的最大(小)值與導數,掌握一般的,函數的單調性與其導數的正負有如下關系: 在某個區(qū)間內,(1)如果,那么函數在這個區(qū)間單調遞增;(2)如果,那么函數在這個區(qū)間單調遞減;求函數在上的最大值與最小值的步驟:(1)求函數在內的極值;(2)將函數的各極值與端點處的函數值,比較,其中最大的是一個最大值,最小的是最小值即可以解答此題.
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=ln(x﹣1)﹣kx+k+1.
(1)當k=1時,證明:f(x)≤0;
(2)求函數f(x)的單調區(qū)間;
(3)證明: + +…+ < (n∈N* , 且n≥2).
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】函數f(x)=Asin(ωx+φ)滿足:f( +x)=﹣f( ﹣x),且f( +x)=f( ﹣x),則ω的一個可能取值是( )
A.2
B.3
C.4
D.5
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】函數f(x)=Asin(ωx+ )(ω>0)的圖象與x軸的交點的橫坐標構成一個公差為 的等差數列,要得到函數g(x)=Asinωx的圖象,只需將f(x)的圖象( )
A.向左平移 個單位
B.向右平移 個單位
C.向左平移 個單位
D.向右平移 個單位
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,矩形ABCD的兩條對角線相交于點M(2,0),AB邊所在直線的方程為x-3y-6=0,點T(-1,1)在AD邊所在直線上.求:
(1) AD邊所在直線的方程;
(2) DC邊所在直線的方程.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知向量 =(cos ,﹣1), =( sin ,cos2 ),設函數f(x)= +1.
(1)若x∈[0, ],f(x)= ,求cosx的值;
(2)在△ABC中,角A,B,C的對邊分別是a,b,c,且滿足2bcosA≤2c﹣ a,求f(B)的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】(本小題滿分10分) 已知P(3,2),一直線過點P,
①若直線在兩坐標軸上截距之和為12,求直線的方程;
②若直線與x、y軸正半軸交于A、B兩點,當面積為12時求直線的方程.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=1n(x﹣1)﹣k(x﹣1)+1
(1)求函數f(x)的單調區(qū)間;
(2)若f(x)≤0恒成立,試確定實數k的取值范圍;
(3)證明: 且n>1)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設m, n是兩條不同的直線,是三個不同的平面, 給出下列四個命題:
①若m⊥α,n∥α,則m⊥n;; ②若α∥β, β∥r, m⊥α,則m⊥r;
③若m∥α,n∥α,則m∥n;; ④若α⊥r, β⊥r,則α∥β.
其中正確命題的序號是 ( )
A. ①和② B. ②和③ C. ③和④ D. ①和④
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com