【題目】某條公共汽車線路收支差額與乘客量的函數(shù)關系如下圖所示(收支差額=車票收入-支出費用),由于目前本條線路虧損,公司有關人員提出了兩條建議:建議(1)不改變車票價格,減少支出費用;建議(2)不改變支出費用,提高車票價格.下面給出的四個圖形中,實線和虛線分別表示目前和建議后的函數(shù)關系,則(

A.①反映建議(2),③反映建議(1B.①反映建議(1),③反映建議(2

C.②反映建議(1),④反映建議(2D.④反映建議(1),②反映建議(2

【答案】B

【解析】

根據(jù)收支差額的計算公式可得正確的判斷.

對于建議(1),因為不改變車票價格,減少支出費用,故建議后的圖象與目前的圖象傾斜方向相同,且縱截距變大,故①反映建議(1);

對于建議(2),因為不改變支出費用,提高車票價格,故建議后的圖象比目前的圖象的傾斜角大,故③反映建議(2).

故選:B.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知拋物線Cy2=2px過點P(1,1).過點(0, )作直線l與拋物線C交于不同的兩點M,N,過點Mx軸的垂線分別與直線OP,ON交于點AB,其中O為原點.

(Ⅰ)求拋物線C的方程,并求其焦點坐標和準線方程;

(Ⅱ)求證:A為線段BM的中點.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓的焦點和上頂點分別為,定義:為橢圓特征三角形,如果兩個橢圓的特征三角形是相似三角形,那么稱這兩個橢圓為相似橢圓,且特征三角形的相似比即為相似橢圓的相似比,已知點是橢圓的一個焦點,且上任意一點到它的兩焦點的距離之和為4

1)若橢圓與橢圓相似,且的相似比為21,求橢圓的方程.

2)已知點是橢圓上的任意一點,若點是直線與拋物線異于原點的交點,證明:點一定在雙曲線.

3)已知直線,與橢圓相似且短半軸長為的橢圓為,是否存在正方形,(設其面積為),使得在直線上,在曲線上?若存在,求出函數(shù)的解析式及定義域;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】若實數(shù)x,y滿足x2-4xy+4y2+4x2y2=4,則當x+2y取得最大值時,的值為________

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在新中國成立70周年國慶閱兵慶典中,眾多群眾在臉上貼著一顆紅心,以此表達對祖國的熱愛之情,在數(shù)學中,有多種方程都可以表示心型曲線,其中有著名的笛卡爾心型曲線,如圖,在直角坐標系中,以原點O為極點,x軸正半軸為極軸建立極坐標系.圖中的曲線就是笛卡爾心型曲線,其極坐標方程為),M為該曲線上的任意一點.

1)當時,求M點的極坐標;

2)將射線OM繞原點O逆時針旋轉與該曲線相交于點N,求的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,橢圓的左、右頂點分別為AB,雙曲線A、B為頂點,焦距為,點P上在第一象限內的動點,直線AP與橢圓相交于另一點Q,線段AQ的中點為M,記直線AP的斜率為為坐標原點.

(1)求雙曲線的方程;

(2)求點M的縱坐標的取值范圍;

(3)是否存在定直線使得直線BP與直線OM關于直線對稱?若存在,求直線的方程;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),

1)當時,求的單調區(qū)間;

2)當,討論的零點個數(shù);

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,已知在長方體中,,點上的一個動點,平面與棱交于點,給出下列命題:

①四棱錐的體積為;

②存在唯一的點,使截面四邊形的周長取得最小值;

③當點不與,重合時,在棱上均存在點,使得平面

④存在唯一一點,使得平面,且

其中正確的命題是_____________(填寫所有正確的序號)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知圓,圓,動圓P與圓M外切并且與圓N內切,圓心P的軌跡為曲線C.

1)求曲線C的方程;

2)設不經過點的直線l與曲線C相交于A,B兩點,直線QA與直線QB的斜率均存在且斜率之和為-2,證明:直線l過定點.

查看答案和解析>>

同步練習冊答案