精英家教網 > 高中數學 > 題目詳情

【題目】【2017湖南長沙二模】某種產品的質量以其質量指標值衡量,并依據質量指標值劃分等極如下表:

質量指標值

等級

三等品

二等品

一等品

從某企業(yè)生產的這種產品中抽取200件,檢測后得到如下的頻率分布直方圖:

(1)根據以上抽樣調查數據 ,能否認為該企業(yè)生產的這種產品符合“一、二等品至少要占全部產品90%”的規(guī)定?

(2)在樣本中,按產品等極用分層抽樣的方法抽取8件,再從這8件產品中隨機抽取4件,求抽取的4件產品中,一、二、三等品都有的概率;

(3)該企業(yè)為提高產品質量,開展了“質量提升月”活動,活動后再抽樣檢測,產品質量指標值近似滿足,則“質量提升月”活動后的質量指標值的均值比活動前大約提升了多少?

【答案】(1)見解析;(2);(3)17.6

【解析】試題分析:(1)根據頻率分布直方圖,一、二等品所占比例的估計值為

,可做出判斷.

(2)由頻率分布直方圖的頻率分布可知8件產品中,一等品3件,二等品4件,三等品1件,分類討論各種情況可得.

(3)算出“質量提升月”活動前,后產品質量指標值為,可得質量指標值的均值比活動前大約提升了17.6

試題解析:(1)根據抽樣調查數據,一、二等品所占比例的估計值為,由于該估計值小于0.92,故不能認為該企業(yè)生產的這種產品符合“一、二等品至少要占全部產品92%”的規(guī)定.

(2)由頻率分布直方圖知,一、二、三等品的頻率分別為0.375、0.5、0.125,故在樣本中用分層抽樣方法抽取的8件產品中,一等品3件,二等品4件,三等品1件,再從這8件產品中隨機抽取4件,一、二、三等品都有的情況有2種:①一等品2件,二等品1件,三等品1件;②一等品1件,二等品2件,三等品1件,故所求的概率.

(3)“質量提升月”活動前,該企業(yè)這種產品的質量指標值的均值約為

“質量提升月”活動后,產品質量指標值近似滿足,則.

所以,“質量提升月”活動后的質量指標值的均值比活動前大約提升了17.6

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】如圖,在直三棱柱ABC﹣A1B1C1中,已知AC⊥BC,BC=CC1 , 設AB1的中點為D,B1C∩BC1=E.

求證:
(1)DE∥平面AA1C1C;
(2)BC1⊥AB1

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某種產品的廣告費支出x與銷售額y(單位:萬元)之間有如下對應數據:

x

2

4

5

6

8

y

30

40

60

50

70


(1)求回歸直線方程;
(2)試預測廣告費支出為10萬元時,銷售額多大?
(3)在已有的五組數據中任意抽取兩組,求至少有一組數據其預測值與實際值之差的絕對值不超過5的概率.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】【2017重慶二診】已知橢圓 的左頂點為,右焦點為,過點且斜率為1的直線交橢圓于另一點,交軸于點

(1)求橢圓的方程;

(2)過點作直線與橢圓交于兩點,連接為坐標原點)并延長交橢圓于點,求面積的最大值及取最大值時直線的方程.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】【2017湖南婁底二!磕撤N產品的質量以其質量指標值衡量,并依據質量指標值劃分等級如下表:

質量指標值

等級

三等品

二等品

一等品

從某企業(yè)生產的這種產品中抽取200件,檢測后得到如下的頻率分布直方圖:

(Ⅰ)根據以上抽樣調查數據,能否認為該企業(yè)生產的這種產品符合“一、二等品至少要占全部產品92%”的規(guī)定?

(Ⅱ)在樣本中,按產品等級用分層抽樣的方法抽取8件,再從這8件產品中隨機抽取4件,求抽取的4件產品中,一、二、三等品都有的概率;

(Ⅲ)該企業(yè)為提高產品質量,開展了“質量提升月”活動,活動后在抽樣檢測,產品質量指標值近似滿足,則“質量提升月”活動后的質量指標值的均值比活動前大約提升了多少?

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知{an}是等差數列,滿足a1=3,a4=12,數列{bn}滿足b1=4,b4=20,且{bn﹣an}為等比數列.
(1)求數列{an}和{bn}的通項公式;
(2)求數列{bn}的前n項和.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】【2017山西三區(qū)八校二!恳阎瘮(其中 為常數且)在處取得極值.

(Ⅰ)當時,求的單調區(qū)間;

(Ⅱ)若上的最大值為1,求的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】為備戰(zhàn)年瑞典乒乓球世界錦標賽,乒乓球隊舉行公開選撥賽,甲、乙、丙三名選手入圍最終單打比賽名單.現甲、乙、丙三人進行隊內單打對抗比賽,每兩人比賽一場,共賽三場,每場比賽勝者得分,負者得分,在每一場比賽中,甲勝乙的概率為丙勝甲的概率為,乙勝丙的概率為,且各場比賽結果互不影響.若甲獲第一名且乙獲第三名的概率為.

(Ⅰ)求的值

(Ⅱ)設在該次對抗比賽中,丙得分為,求的分布列和數學期望.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某媒體對“男女延遲退休”這一公眾關注的問題進行了民意調查,如表是在某單位得到的數據(人數):
(1)能否有90%以上的把握認為對這一問題的看法與性別有關?

贊同

反對

合計

5

6

11

11

3

14

合計

16

9

25


(2)從贊同“男女延遲退休”16人中選出3人進行陳 述發(fā)言,求事件“男士和女士各至少有1人發(fā)言”的概率;
(3)若以這25人的樣本數據來估計整個地區(qū)的總體數據,現從該地區(qū)(人數很多)任選5人,記贊同“男女延遲退休”的人數為X,求X的數學期望.
附:

p(K2≥k)

0.15

0.10

0.05

0.025

0.010

0.005

0.001

k

2.072

2.706

3.841

5.024

6.635

7.879

10.828

K2=

查看答案和解析>>

同步練習冊答案