【題目】如圖,甲船以每小時 海里的速度向正北方航行,乙船按固定方向勻速直線航行,當(dāng)甲船位于A1處時,乙船位于甲船的北偏西105°方向的B1處,此時兩船相距20海里,當(dāng)甲船航行20分鐘到達A2處時,乙船航行到甲船的北偏西120°方向的B2處,此時兩船相距 海里,問乙船每小時航行多少海里?

【答案】解:由題意可知A1B1=20,A2B2=10 ,A1A2=30 × =10 ,∠B2A2A1=180°﹣120°=60°, 連結(jié)A1B2 , 則△A1A2B2是等邊三角形,
∴A1B2=10 ,∠A2A1B2=60°.
∴∠B1A1B2=105°﹣60°=45°,
在△B1A1B2中,由余弦定理得B1B22=A1B12+A1B22﹣2A1B1A1B2cos∠B1A1B2=400+200﹣400=200.
∴B1B2=10
∴乙船的航行速度是 海里/小時.

【解析】連結(jié)A1B2 , 則△A1A2B2是等邊三角形,從而∠B1A1B2=105°﹣60°=45°,A1B2=10 ,在△B1A1B2中,由余弦定理求出B1B2得出乙船的速度.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|< )的部分圖象如圖所示.

(1)求函數(shù)f(x)的解析式;
(2)令g(x)=f(﹣x﹣ ),求g(x)的單調(diào)遞增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),其中實數(shù)

(Ⅰ)判斷是否為函數(shù)的極值點,并說明理由;

(Ⅱ)若在區(qū)間上恒成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知是等差數(shù)列,滿足,數(shù)列滿足,且為等比數(shù)列.

(1)求數(shù)列的通項公式;

(2)求數(shù)列的前n項和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,四棱錐中,底面是邊長為2的正方形, ,且, 中點.

(Ⅰ)求證: 平面;  

求二面角的平面角的余弦.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的兩個焦點是,并且經(jīng)過點,拋物線的頂點在坐標(biāo)原點,焦點恰好是橢圓的右頂點.

求橢圓和拋物線的標(biāo)準(zhǔn)方程;

已知點為拋物線內(nèi)一個定點,過作斜率分別為的兩條直線交拋物線于點,且分別是的中點,若,求證:直線過定點.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系中,以坐標(biāo)原點為極點, 軸正半軸為極軸建立極坐標(biāo)系,

已知某圓的極坐標(biāo)方程為:

(1)將極坐標(biāo)方程化為直角坐標(biāo)方程;

(2)若點 在該圓上,求的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知向量 =(m,cos2x), =(sin2x,n),設(shè)函數(shù)f(x)= ,且y=f(x)的圖象過點( )和點( ,﹣2). (Ⅰ)求m,n的值;
(Ⅱ)將y=f(x)的圖象向左平移φ(0<φ<π)個單位后得到函數(shù)y=g(x)的圖象.若y=g(x)的圖象上各最高點到點(0,3)的距離的最小值為1,求y=g(x)的單調(diào)增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知直線 恒過定點,圓經(jīng)過點和點,且圓心在直線上.

(1)求定點的坐標(biāo);

(2)求圓的方程;

(3)已知點為圓直徑的一個端點,若另一個端點為點,問:在軸上是否存在一點,使得為直角三角形,若存在,求出的值,若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案