【題目】設(shè)是空間兩條直線, 是空間兩個(gè)平面,則下列命題中不正確的是( )

A. 當(dāng)時(shí),“”是“”的充要條件

B. 當(dāng)時(shí),“”是“”的充分不必要條件

C. 當(dāng)時(shí),“”是“”的必要不充分條件

D. 當(dāng)時(shí),“”是“”的充分不必要條件

【答案】C

【解析】當(dāng) 時(shí), 異面 ,所以當(dāng) 時(shí),的即不必要又不充分條件,故C錯(cuò)誤;當(dāng) 時(shí), ,推不出所以當(dāng) 時(shí),的充分不必要條件,故正確;當(dāng)時(shí) , ,所以當(dāng)時(shí) ,成立的充要條件,A正確;當(dāng) 時(shí), 推不出,當(dāng)時(shí),的充分不必要條件,正確,故選C.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在四棱錐中,底面為平行四邊形, , , 點(diǎn)在底面內(nèi)的射影在線段上,且, ,M在線段上,且

(Ⅰ)證明: 平面;

(Ⅱ)在線段AD上確定一點(diǎn)F,使得平面平面PAB,并求三棱錐的體積

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列{an}是首項(xiàng)為a1= ,公比q= 的等比數(shù)列,設(shè)bn+2=3 an(n∈N*),數(shù)列{cn}滿足cn=anbn
(1)求證:{bn}是等差數(shù)列;
(2)求數(shù)列{cn}的前n項(xiàng)和Sn;
(3)若cn m2+m﹣1對一切正整數(shù)n恒成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ABCD中,AB⊥AD,AD∥BC,AD=8,BC=6,AB=2,E,F(xiàn)分別在BC,AD上,EF∥AB,現(xiàn)將四邊形ABEF沿EF折起,使得平面ABEF⊥平面EFDC.

(1)若BE=3,求幾何體BEC﹣AFD的體積;
(2)求三棱錐A﹣CDF的體積的最大值,并求此時(shí)二面角A﹣CD﹣E的正切值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某商場擬對某商品進(jìn)行促銷,現(xiàn)有兩種方案供選擇,每種促銷方案都需分兩個(gè)月實(shí)施,且每種方案中第一個(gè)月與第二個(gè)月的銷售相互獨(dú)立.根據(jù)以往促銷的統(tǒng)計(jì)數(shù)據(jù),若實(shí)施方案1,預(yù)計(jì)第一個(gè)月的銷量是促銷前的1.2倍和1.5倍的概率分別是0.6和0.4,第二個(gè)月的銷量是第一個(gè)月的1.4倍和1.6倍的概率都是0.5;若實(shí)施方案2,預(yù)計(jì)第一個(gè)月的銷量是促銷前的1.4倍和1.5倍的概率分別是0.7和0.3,第二個(gè)月的銷量是第一個(gè)月的1.2倍和1.6倍的概率分別是0.6和0.4.令表示實(shí)施方案的第二個(gè)月的銷量是促銷前銷量的倍數(shù).

(Ⅰ)求, 的分布列;

(Ⅱ)不管實(shí)施哪種方案, 與第二個(gè)月的利潤之間的關(guān)系如下表,試比較哪種方案第二個(gè)月的利潤更大.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知中心在原點(diǎn),焦點(diǎn)在軸上的橢圓的一個(gè)焦點(diǎn)為 是橢圓上的一個(gè)點(diǎn).

(1)求橢圓的標(biāo)準(zhǔn)方程;

(2)設(shè)橢圓的上、下頂點(diǎn)分別為, )是橢圓上異于的任意一點(diǎn), 軸, 為垂足, 為線段中點(diǎn),直線交直線于點(diǎn), 為線段的中點(diǎn),如果的面積為,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列{an}的首項(xiàng)a1=a,Sn是數(shù)列{an}的前n項(xiàng)和,且滿足:Sn2=3n2an+Sn12 , an≠0,n≥2,n∈N*
(1)若數(shù)列{an}是等差數(shù)列,求a的值;
(2)確定a的取值集合M,使a∈M時(shí),數(shù)列{an}是遞增數(shù)列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),

(Ⅰ)討論的單調(diào)性;

(Ⅱ)證明:當(dāng)時(shí),函數(shù))有最小值.記的最小值為,求的值域;

(Ⅲ)若存在兩個(gè)不同的零點(diǎn), ),求的取值范圍,并比較與0的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】過點(diǎn)A(a,a)可作圓x2+y2﹣2ax+a2+2a﹣3=0的兩條切線,則實(shí)數(shù)a的取值范圍為(
A.a<﹣3或a>1
B.a<
C.﹣3<a<1 或a>
D.a<﹣3或1<a<

查看答案和解析>>

同步練習(xí)冊答案