【題目】已知函數(shù)(其中為常數(shù)).

1)如果函數(shù)有相同的極值點(diǎn),求的值;

2)當(dāng),恒成立,求的取值范圍;

3)記函數(shù),若函數(shù)個(gè)不同的零點(diǎn),求實(shí)數(shù)的取值范圍.

【答案】123

【解析】

1)利用導(dǎo)數(shù)求極值點(diǎn)可得結(jié)果.

2)利用等價(jià)轉(zhuǎn)換的思想,構(gòu)造新的二次函數(shù),利用二次函數(shù)性質(zhì)可得結(jié)果.

3)根據(jù)等價(jià)轉(zhuǎn)換的思想,利用導(dǎo)數(shù)分別研究的單調(diào)性,結(jié)合分類討論的思想判斷根的情況,最后作出檢驗(yàn)可得結(jié)果.

1

,

,得,而

處有極大值,,

;綜上:.

2)由已知得上恒成立

等價(jià)于上恒成立,

,即時(shí),恒成立

,即時(shí),,得

綜上

3)由題意有3個(gè)不同的實(shí)根.

2個(gè)不同的實(shí)根,且這2個(gè)實(shí)根兩兩不相等.

1個(gè)不同的實(shí)根,

只需滿足

23個(gè)不同的實(shí)根,

1*當(dāng)時(shí),

上為增函數(shù),

上為減函數(shù),在上為增函數(shù),

處取得最大值,

,不符合題意,舍;

2*當(dāng)時(shí),不符合題意,舍;

3*當(dāng)時(shí),

上為增函數(shù),

上為減函數(shù),在上為增函數(shù).

處取得極大值,

;所以

因?yàn)椋?/span>i)(ii)要同時(shí)滿足,

,(注:也對)

下證:這5個(gè)實(shí)根兩兩不相等,

即證:不存在使得,

同時(shí)成立;

若存在使得

,

,

當(dāng)時(shí),,不符合,舍去;

當(dāng)時(shí),即存;

又由,即;

聯(lián)立①②式,可得;

當(dāng)時(shí),

便有5個(gè)不同的零點(diǎn),故舍去,所以這5個(gè)實(shí)根兩兩不相等.

綜上,當(dāng)時(shí),函數(shù)5個(gè)不同的零點(diǎn).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,三棱柱中, 平面,,為鄰邊作平行四邊形,連接.

(1)求證:平面

(2)若二面角.

求證:平面平面;

求直線與平面所成角的正切值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知四棱臺的上下底面分別是邊長為2和4的正方形, = 4且 ⊥底面,點(diǎn)的中點(diǎn).

(Ⅰ)求證: ;

(Ⅱ)在邊上找一點(diǎn),使∥面,

并求三棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,在四棱錐中,底面四邊形為正方形,已知平面,,.

1)證明:

2)求與平面所成角的正弦值;

3)在棱上是否存在一點(diǎn),使得平面平面?若存在,求的值并證明,若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】隨著科技的發(fā)展,網(wǎng)絡(luò)已逐漸融入了人們的生活.網(wǎng)購是非常方便的購物方式,為了了解網(wǎng)購在我市的普及情況,某調(diào)查機(jī)構(gòu)進(jìn)行了有關(guān)網(wǎng)購的調(diào)查問卷,并從參與調(diào)查的市民中隨機(jī)抽取了男女各100人進(jìn)行分析,從而得到表(單位:人)

經(jīng)常網(wǎng)購

偶爾或不用網(wǎng)購

合計(jì)

男性

50

100

女性

70

100

合計(jì)

(1)完成上表,并根據(jù)以上數(shù)據(jù)判斷能否在犯錯(cuò)誤的概率不超過0.01的前提下認(rèn)為我市市民網(wǎng)購與性別有關(guān)?

(2)①現(xiàn)從所抽取的女市民中利用分層抽樣的方法抽取10人,再從這10人中隨機(jī)選取3人贈送優(yōu)惠券,求選取的3人中至少有2人經(jīng)常網(wǎng)購的概率;

②將頻率視為概率,從我市所有參與調(diào)查的市民中隨機(jī)抽取10人贈送禮品,記其中經(jīng)常網(wǎng)購的人數(shù)為,求隨機(jī)變量的數(shù)學(xué)期望和方差.

參考公式:

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某蛋糕店制作并銷售一款蛋糕,制作一個(gè)蛋糕成本3元,且以8元的價(jià)格出售,若當(dāng)天賣不完,剩下的則無償捐獻(xiàn)給飼料加工廠。根據(jù)以往100天的資料統(tǒng)計(jì),得到如下需求量表。該蛋糕店一天制作了這款蛋糕個(gè),以(單位:個(gè),)表示當(dāng)天的市場需求量,(單位:元)表示當(dāng)天出售這款蛋糕獲得的利潤.

需求量/個(gè)

天數(shù)

15

25

30

20

10

(1)當(dāng)時(shí),若時(shí)獲得的利潤為,時(shí)獲得的利潤為,試比較的大。

(2)當(dāng)時(shí),根據(jù)上表,從利潤不少于570元的天數(shù)中,按需求量分層抽樣抽取6天.

(i)求此時(shí)利潤關(guān)于市場需求量的函數(shù)解析式,并求這6天中利潤為650元的天數(shù);

(ii)再從這6天中抽取3天做進(jìn)一步分析,設(shè)這3天中利潤為650元的天數(shù)為,求隨機(jī)變量的分布列及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓()的上頂點(diǎn)為,左焦點(diǎn)為,離心率為,直線與圓相切.

1)求橢圓的標(biāo)準(zhǔn)方程;

2)設(shè)過點(diǎn)且斜率存在的直線與橢圓相交于兩點(diǎn),線段的垂直平分線交軸于點(diǎn),試判斷是否為定值?并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某廠用鮮牛奶在某臺設(shè)備上生產(chǎn)A,B兩種奶制品.生產(chǎn)1A產(chǎn)品需鮮牛奶2噸,使用設(shè)備1小時(shí),獲利1 000元;生產(chǎn)1B產(chǎn)品需鮮牛奶1.5噸,使用設(shè)備1.5小時(shí),獲利1 200.要求每天B產(chǎn)品的產(chǎn)量不超過A產(chǎn)品產(chǎn)量的2倍,設(shè)備每天生產(chǎn)A,B兩種產(chǎn)品時(shí)間之和不超過12小時(shí).假定每天可獲取的鮮牛奶數(shù)量W(單位:噸)是一個(gè)隨機(jī)變量,其分布列為

W

12

15

18

P

0.3

0.5

0.2

該廠每天根據(jù)獲取的鮮牛奶數(shù)量安排生產(chǎn),使其獲利最大,因此每天的最大獲利Z(單位:元)是一個(gè)隨機(jī)變量.

(I)Z的分布列和均值;

(II)若每天可獲取的鮮牛奶數(shù)量相互獨(dú)立,求3天中至少有1天的最大獲利超過10 000元的概率.

查看答案和解析>>

同步練習(xí)冊答案