【題目】已知橢圓C: =1(a>b>0)的離心率為 ,以原點(diǎn)O為圓心,橢圓的短半軸長(zhǎng)為半徑的圓與直線x﹣y+ =0相切.
(Ⅰ)求橢圓C的標(biāo)準(zhǔn)方程;
(Ⅱ)若直線L:y=kx+m與橢圓C相交于A、B兩點(diǎn),且kOAkOB=﹣ ,求證:△AOB的面積為定值.
【答案】(Ⅰ)解:由題意得 a2=4,b2=3.
∴橢圓的方程為: ;
(Ⅱ)證明:設(shè)A(x1 , y1),B(x2 , y2),
則A,B的坐標(biāo)滿(mǎn)足 ,消去y化簡(jiǎn)得:(3+4k2)x2+8kmx+4m2﹣12=0.
,
由△>0,得4k2﹣m2+3>0.
y1y2=(kx1+m)(kx2+m)=
= = .
∵ = ,
∴ ,即 .
∴ ,即2m2﹣4k2=3.
∵ =
= .
又O點(diǎn)到直線y=kx+m的距離d= ,
∴ =
= = 為定值
【解析】(Ⅰ)由橢圓的離心率等于 ,原點(diǎn)O到直線 的距離等于b及隱含條件c2=a2﹣b2聯(lián)立方程組求解a2 , b2的值,則橢圓C的標(biāo)準(zhǔn)方程可求;
(Ⅱ)聯(lián)立直線方程和橢圓方程,消去y后利用根與系數(shù)關(guān)系得到A,B兩點(diǎn)的橫縱坐標(biāo)的和與積,由弦長(zhǎng)公式求得|AB|,由點(diǎn)到直線的距離公式求得O到AB的距離,代入三角形的面積公式證得答案.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知△ABC的三個(gè)頂點(diǎn)A、B、C及平面內(nèi)一點(diǎn)P滿(mǎn)足 + = ,下列結(jié)論中正確的是( )
A.P在△ABC的內(nèi)部
B.P在△ABC的邊AB上
C.P在AB邊所在直線上
D.P在△ABC的外部
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知二次函數(shù)f(x)=x2+mx+n(m、n∈R)的兩個(gè)零點(diǎn)分別在(0,1)與(1,2)內(nèi),則(m+1)2+(n﹣2)2的取值范圍是( )
A.
B.
C.[2,5]
D.(2,5)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】若對(duì)任意的x∈[﹣1,2],都有x2﹣2x+a≤0(a為常數(shù)),則a的取值范圍是( )
A.(﹣∞,﹣3]
B.(﹣∞,0]
C.[1,+∞)
D.(﹣∞,1]
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)= (m,n為常數(shù))是定義在[﹣1,1]上的奇函數(shù),且f(﹣1)=﹣ .
(1)求函數(shù)f(x)的解析式;
(2)解關(guān)于x的不等式f(2x﹣1)<﹣f(x).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓C1: +y2=1,橢圓C2以C1的長(zhǎng)軸為短軸,且與C1有相同的離心率.
(1)求橢圓C2的方程;
(2)設(shè)O為坐標(biāo)原點(diǎn),點(diǎn)A,B分別在橢圓C1和C2上, ,求直線AB的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知四棱柱ABCD﹣A1B1C1D1中,底面ABCD是邊長(zhǎng)為3的正方形,側(cè)棱AA1長(zhǎng)為4,且AA1與A1B1 , A1D1的夾角都是60°,則AC1的長(zhǎng)等于( )
A.10
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)若函數(shù)與函數(shù)在點(diǎn)處有共同的切線,求的值;
(2)證明: ;
(3)若不等式對(duì)所有, 都成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】(1)請(qǐng)根據(jù)對(duì)數(shù)函數(shù)來(lái)指出函數(shù)的基本性質(zhì)(結(jié)論不要求證明),并畫(huà)出圖像;
(2)拉普拉斯稱(chēng)贊對(duì)數(shù)是一項(xiàng)“使天文學(xué)家壽命倍増”的發(fā)明.對(duì)數(shù)可以將大數(shù)之間的乘除運(yùn)算簡(jiǎn)化為加減運(yùn)算,請(qǐng)證明: ;
(3)2017年5月23日至27日,圍棋世界冠軍柯潔與DeepMind公司開(kāi)發(fā)的程序“AlphaGo”進(jìn)行三局人機(jī)對(duì)弈,以復(fù)雜的圍棋來(lái)測(cè)試人工智能.圍棋復(fù)雜度的上限約為,而根據(jù)有關(guān)資料,可觀測(cè)宇宙中普通物質(zhì)的原子總數(shù)約為.甲、乙兩個(gè)同學(xué)都估算了的近似值,甲認(rèn)為是,乙認(rèn)為是.現(xiàn)有兩種定義:
①若實(shí)數(shù)滿(mǎn)足,則稱(chēng)比接近;
②若實(shí)數(shù),且,滿(mǎn)足,則稱(chēng)比接近;請(qǐng)你任選取其中一種定義來(lái)判斷哪個(gè)同學(xué)的近似值更接近,并說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com