【題目】一款手游,頁面上有一系列的偽裝,其中隱藏了4個寶藏.如果你在規(guī)定的時間內(nèi)找到了這4個寶藏,將會彈出下一個頁面,這個頁面仍隱藏了2個寶藏,若能在規(guī)定的時間內(nèi)找到這2個寶藏,那么闖關(guān)成功,否則闖關(guān)失敗,結(jié)束游戲;如果你在規(guī)定的時間內(nèi)找到了3個寶藏,仍會彈出下一個頁面,但這個頁面隱藏了4個寶藏,若能在規(guī)定的時間內(nèi)找到這4個寶藏,那么闖關(guān)成功,否則闖關(guān)失敗,結(jié)束游戲;其它情況下,不會彈出下一個頁面,闖關(guān)失敗,并結(jié)束游戲.

假定你找到任何一個寶藏的概率為,且能否找到其它寶藏相互獨立..

1)求闖關(guān)成功的概率;

2)假定你付1Q幣游戲才能開始,能進(jìn)入下一個頁面就能獲得2Q幣的獎勵,闖關(guān)成功還能獲得另外4Q幣的獎勵,闖關(guān)失敗沒有額外的獎勵.求一局游戲結(jié)束,收益的Q幣個數(shù)X的數(shù)學(xué)期望(收益=收入-支出).

【答案】1;(2EX=

【解析】

1)記闖關(guān)成功為事件A,事件A共分二類,找到4個寶藏并且闖關(guān)成功為事件B,找到3個寶藏并且闖關(guān)成功為事件C,那么A=B+C,利用互斥事件的概率的加法公式,即可求解

2)記一局游戲結(jié)束能收益XQ幣,得到,求得相應(yīng)的概率,得出隨機(jī)變量的分布列,利用期望的公式,求得數(shù)學(xué)期望

1)由題意,記闖關(guān)成功為事件A,事件A共分二類,找到4個寶藏并且闖關(guān)成功為事件B,找到3個寶藏并且闖關(guān)成功為事件C,那么,

因為,

所以

2)記一局游戲結(jié)束能收益XQ幣,那么,

由(1)知,

X的概率分布列為:

X

1

1

5

P

所以EX=

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某學(xué)生對函數(shù)的性質(zhì)進(jìn)行研究,得出如下的結(jié)論:

函數(shù)在上單調(diào)遞減,在上單調(diào)遞增;

是函數(shù)圖象的一個對稱中心;

函數(shù)圖象關(guān)于直線對稱;

存在常數(shù),使對一切實數(shù)x均成立,

其中正確命題的個數(shù)是( )

A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知四棱錐,底面ABCD是邊長為1的正方形,,平面平面ABCD,當(dāng)點C到平面ABE的距離最大時,該四棱錐的體積為(

A.B.C.D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】新中國成立70周年以來,黨中央國務(wù)院高度重視改善人民生活,始終把提高人民生活水平作為一切工作的出發(fā)點和落腳點城鄉(xiāng)居民收入大幅增長,居民生活發(fā)生了翻天覆地的變化.下面是1949年及2015~2018年中國居民人均可支配收入(元)統(tǒng)計圖.以下結(jié)論中不正確的是(

A.20l5-2018年中國居民人均可支配收入與年份成正相關(guān)

B.2018年中居民人均可支配收入超過了1949年的500

C.2015-2018年中國居民人均可支配收入平均超過了24000

D.2015-2018年中圍居民人均可支配收入都超過了1949年的500

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,棱長為a的正方體,N是棱的中點;

1)求直線AN與平面所成角的大。

2)求到平面ANC的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】正四棱柱中,底面的邊長為1,為正方形的中心.

1)求證:平面;

2)若異面直線所成的角的正弦值為,求直線到平面的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),(其中e為自然對數(shù)的底數(shù)),若關(guān)于x的方程恰有5個相異的實根,則實數(shù)a的取值范圍為________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,已知直線的參數(shù)方程為為參數(shù)).在以坐標(biāo)原點為極點,軸的正半軸為極軸,且與直角坐標(biāo)系長度單位相同的極坐標(biāo)系中,曲線的極坐標(biāo)方程是.

(1)求直線的普通方程與曲線的直角坐標(biāo)方程;

(2)設(shè)點.若直與曲線相交于兩點,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為發(fā)揮體育咋核心素養(yǎng)時代的獨特育人價值,越來越多的中學(xué)生已將某些體育項目納入到學(xué)生的必修課程,某中學(xué)計劃在高一年級開設(shè)游泳課程,為了解學(xué)生對游泳的興趣,某數(shù)學(xué)研究學(xué)習(xí)小組隨機(jī)從該校高一年級學(xué)生抽取了100人進(jìn)行調(diào)查.

一(1

一(2

一(3

一(4

一(5

一(6

一(7

一(8

一(9

一(10

市級比賽

獲獎人數(shù)

2

2

3

3

4

4

3

3

4

2

市級以上比

賽獲獎人數(shù)

2

2

1

0

2

3

3

2

1

2

1)已知在被抽取的女生中有6名高一(1)班學(xué)生,其中3名對游泳有興趣,現(xiàn)在從這6名學(xué)生中最忌抽取3人,求至少有2人對游泳有興趣的概率;

2)該研究性學(xué)習(xí)小組在調(diào)查發(fā)現(xiàn),對游泳有興趣的學(xué)生中有部分曾在市級以上游泳比賽中獲獎,如上表所示,若從高一(8)班和高一(9)班獲獎學(xué)生中隨機(jī)各抽取2人進(jìn)行跟蹤調(diào)查.記選中的4人中市級以上游泳比賽獲獎的人數(shù)為,求隨機(jī)變量的分布列及數(shù)學(xué)期望.

查看答案和解析>>

同步練習(xí)冊答案