【題目】如圖,在長方體中, 分別為的中點.
(1)證明:平面平面;
(2)證明: 平面;
(3)若正方體棱長為1,求四面體的體積.
【答案】(1)詳見解析;(2) 詳見解析;(3) .
【解析】試題分析:(1)要證平面平面,即證A1B⊥平面ADC1B1;(2)要證平面,即證線線平行;(3)利用等積變換求四面體的體積.
試題解析:
(1)如圖,因為ABCD-A1B1C1D1為正方體,所以B1C1⊥平面ABB1A1.
因為A1B平面ABB1A1,所以B1C1⊥A1B.
因為A1B⊥AB1,B1C1∩AB1=B1,所以A1B⊥平面ADC1B1.
因為A1B平面A1BE,所以平面ADC1B1⊥平面A1BE
(2)如圖,設(shè)AB1∩A1B=O,連接EF,OE.
由已知條件得EF∥C1D,且EF= C1D.B1O∥C1D且B1O= C1D,
所以EF∥B1O且EF=B1O,所以四邊形B1OEF為平行四邊形,
所以B1F∥OE,
因為B1F平面A1BE,OE平面A1BE,所以B1F∥平面A1BE
(3) .
科目:高中數(shù)學 來源: 題型:
【題目】為了研究家用轎車在高速公路上的車速情況,交通部門隨機對50名家用轎車駕駛員進行調(diào)查,得到其在高速公路上行駛時的平均車速情況為:在30名男性駕駛員中,平均車速超過的有20人,不超過的有10人.在20名女性駕駛員中,平均車速超過的有5人,不超過的有15人.
(Ⅰ)完成下面的列聯(lián)表,并判斷是否有的把握認為平均車速超過的人與性別有關(guān);
平均車數(shù)超過 人數(shù) | 平均車速不超過 人數(shù) | 合計 | |
男性駕駛員人數(shù) | |||
女性駕駛員人數(shù) | |||
合計 |
(Ⅱ)以上述數(shù)據(jù)樣本來估計總體,現(xiàn)從高速公路上行駛的大量家用轎車中隨即抽取3輛,記這3輛車中駕駛員為女性且車速不超過的車輛數(shù)為,若每次抽取的結(jié)果是相互獨立的,求的分布列和數(shù)學期望
參考公式:,其中.
參考數(shù)據(jù):
0.150 | 0.100 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在三棱柱ABC-A1B1C1中,△ABC是等邊三角形,BC=CC1=4,D是A1C1中點.
(1)求證:A1B∥平面B1CD;
(2)當三棱錐C-B1C1D體積最大時,求點B到平面B1CD的距離.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知f(x)在R上是單調(diào)遞減的一次函數(shù),且f(f(x))=4x-1.
(1)求f(x);
(2)求函數(shù)y=f(x)+x2-x在x∈[-1,2]上的最大值與最小值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】(本小題滿分12分) 某中學的環(huán)保社團參照國家環(huán)境標準制定了該校所在區(qū)域空氣質(zhì)量指數(shù)與空氣質(zhì)量等級對應(yīng)關(guān)系如下表(假設(shè)該區(qū)域空氣質(zhì)量指數(shù)不會超過):
空氣質(zhì)量指數(shù) | ||||||
空氣質(zhì)量等級 | 級優(yōu) | 級良 | 級輕度污染 | 級中度污染 | 級重度污染 | 級嚴重污染 |
該社團將該校區(qū)在年天的空氣質(zhì)量指數(shù)監(jiān)測數(shù)據(jù)作為樣本,繪制的頻率分布直方圖如下圖,把該直方圖所得頻率估計為概率.
(Ⅰ)請估算年(以天計算)全年空氣質(zhì)量優(yōu)良的天數(shù)(未滿一天按一天計算);
(Ⅱ)該校年月、日將作為高考考場,若這兩天中某天出現(xiàn)級重度污染,需要凈化空氣費用元,出現(xiàn)級嚴重污染,需要凈化空氣費用元,記這兩天凈化空氣總費用為元,求的分布列及數(shù)學期望.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在等差數(shù)列{an}中,a1=1,S5=-15.
(1) 求數(shù)列{an}的通項公式;
(2) 若數(shù)列{an}的前k項和Sk=-48,求k的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某地方政府要將一塊如圖所示的直角梯形ABCD空地改建為健身娛樂廣場.已知AD//BC, 百米, 百米,廣場入口P在AB上,且,根據(jù)規(guī)劃,過點P鋪設(shè)兩條相互垂直的筆直小路PM,PN(小路的寬度不計),點M,N分別在邊AD,BC上(包含端點),區(qū)域擬建為跳舞健身廣場, 區(qū)域擬建為兒童樂園,其它區(qū)域鋪設(shè)綠化草坪,設(shè).
(1)求綠化草坪面積的最大值;
(2)現(xiàn)擬將兩條小路PNM,PN進行不同風格的美化,PM小路的美化費用為每百米1萬元,PN小路的美化費用為每百米2萬元,試確定M,N的位置,使得小路PM,PN的美化總費用最低,并求出最小費用.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知曲線C1: (t為參數(shù))曲線C2:+y2=4.
(1)在同一平面直角坐標系中,將曲線C2上的點按坐標變換后得到曲線C′。求曲線C′的普通方程,并寫出它的參數(shù)方程;
(2)若C1上的點P對應(yīng)的參數(shù)為t=π/2,Q為C′上的動點,求PQ中點M到直線C3: (t為參數(shù))的距離的最小值
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】(10分)設(shè)和分別是先后拋擲一枚骰子得到的點數(shù),用隨機變量表示方程
實根的個數(shù)(重根按一個計).
(Ⅰ)求方程有實根的概率;
(Ⅱ)求的分布列和數(shù)學期望;
(Ⅲ)求在先后兩次出現(xiàn)的點數(shù)中有5的條件下,方程有實根的概率.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com