(本小題共16分)

已知數(shù)列各項(xiàng)均不為0,其前項(xiàng)和為,且對任意都有為大于1的常數(shù)),記f(n)

(1)求;

(2)試比較的大小();

(3)求證:(2n-1)f(n)≤f(1)+f(2)+…+f(2n-1) ≤[1-()2n-1] (n∈N*)

 

【答案】

【解析】

解:(1) ∵,       ①

.      ②

②-①,得,即

在①中令,可得

是首項(xiàng)為,公比為的等比數(shù)列,.  ……… 4分

(2).

f(n),       

,且,

,

,(). …10分

(3) 由(2)知 ,

,().

∴當(dāng)n時(shí),

,     

(當(dāng)且僅當(dāng)時(shí)取等號).

另一方面,當(dāng)n,時(shí),

,

,(當(dāng)且僅當(dāng)時(shí)取等號).

(當(dāng)且僅當(dāng)時(shí)取等號).

綜上所述,2n-1)f(n)≤f(1)+f(2)+…+f(2n-1)

≤[1-()2n-1] (n∈N*)……… 16分

 

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(本小題共16分)設(shè)函數(shù).

(Ⅰ)求曲線在點(diǎn)處的切線方程;(Ⅱ)求函數(shù)的單調(diào)區(qū)間;    

(Ⅲ)若函數(shù)在區(qū)間內(nèi)單調(diào)遞增,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年江蘇省姜堰市高三第一學(xué)期學(xué)情調(diào)研數(shù)學(xué)試卷 題型:解答題

(本小題共16分)

已知數(shù)列各項(xiàng)均不為0,其前項(xiàng)和為,且對任意都有 (為大于1的常數(shù)),記f(n)

(1)求;

(2)試比較的大。);

(3)求證:(2n-1)f(n)≤f(1)+f(2)+…+f(2n-1) ≤[1-()2n-1] (n∈N*

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年江蘇省姜堰市高三第一學(xué)期學(xué)情調(diào)研數(shù)學(xué)試卷 題型:解答題

(本小題共16分)

已知橢圓和圓,過橢圓上一點(diǎn)引圓的兩條切線,切點(diǎn)分別為. (1)①若圓過橢圓的兩個(gè)焦點(diǎn),求橢圓的離心率; ②若橢圓上存在點(diǎn),使得,求橢圓離心率的取值(2)設(shè)直線軸、軸分別交于點(diǎn),,求證:為定值.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年江蘇省姜堰市高三學(xué)情調(diào)查數(shù)學(xué)試卷 題型:解答題

(本小題共16分)

已知橢圓和圓,過橢圓上一點(diǎn)引圓的兩條切線,切點(diǎn)分別為.    

(1)①若圓過橢圓的兩個(gè)焦點(diǎn),求橢圓的離心率; ②若橢圓上存在點(diǎn),使得,求橢圓離心率的取值范圍;

(2)設(shè)直線軸、軸分別交于點(diǎn),求證:為定值.

 

查看答案和解析>>

同步練習(xí)冊答案