【題目】中國(guó)傳統(tǒng)文化中很多內(nèi)容體現(xiàn)了數(shù)學(xué)的對(duì)稱(chēng)美,如圖所示的太極圖是由黑白兩個(gè)魚(yú)形紋組成的圓形圖案,充分展現(xiàn)了相互轉(zhuǎn)化、對(duì)稱(chēng)統(tǒng)一的形式美、和諧美,給出定義:能夠?qū)AO的周長(zhǎng)和面積同時(shí)平分的函數(shù)稱(chēng)為這個(gè)圓的“優(yōu)美函數(shù)”,給出下列命題:
①對(duì)于任意一個(gè)圓O,其“優(yōu)美函數(shù)”有無(wú)數(shù)個(gè);
②函數(shù)f(x)=ln()可以是某個(gè)圓的“優(yōu)美函數(shù)”;
③函數(shù)y=1+sinx可以同時(shí)是無(wú)數(shù)個(gè)圓的“優(yōu)美函數(shù)”;
④函數(shù)y=2x+1可以同時(shí)是無(wú)數(shù)個(gè)圓的“優(yōu)美函數(shù)”;
⑤函數(shù)y=f(x)是“優(yōu)美函數(shù)”的充要條件為函數(shù)y=f(x)的圖象是中心對(duì)稱(chēng)圖形.
其中正確的命題是_____.
【答案】①③④
【解析】
根據(jù)優(yōu)美函數(shù)的定義,經(jīng)過(guò)圓心的直線滿足①;對(duì)于函數(shù)根據(jù)其單調(diào)性且圖象為曲線可判斷②;當(dāng)圓心經(jīng)過(guò)的中心時(shí)可判斷③;直線經(jīng)過(guò)圓心時(shí)可判斷④;舉出反例雙曲線可判斷⑤.
①對(duì)于任意一個(gè)圓,其過(guò)圓心的對(duì)稱(chēng)軸由無(wú)數(shù)條,所以其“優(yōu)美函數(shù)”有無(wú)數(shù)個(gè),故①正確;②函數(shù)的定義域?yàn)?/span>,在上單調(diào)遞減,在上單調(diào)遞增且圖象為曲線,故不可以是某個(gè)圓的“優(yōu)美函數(shù)”,故②不正確;③當(dāng)圓經(jīng)過(guò)函數(shù)的對(duì)稱(chēng)中心時(shí),根據(jù)的圖象可知可以將圓分成優(yōu)美函數(shù),圖象可以延伸,所以可以同時(shí)是無(wú)數(shù)個(gè)圓的“優(yōu)美函數(shù)”;④函數(shù)只要過(guò)圓心,即可以同時(shí)是無(wú)數(shù)個(gè)圓的“優(yōu)美函數(shù)”;⑤函數(shù)是“優(yōu)美函數(shù)”的充要條件為函數(shù)的圖象是中心對(duì)稱(chēng)圖形,不對(duì),有些中心對(duì)稱(chēng)圖形不一定是“優(yōu)美函數(shù)”,比如“雙曲線”;故答案為①③④.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】隨著電子閱讀的普及,傳統(tǒng)紙質(zhì)媒體遭受到了強(qiáng)烈的沖擊.某雜志社近9年來(lái)的紙質(zhì)廣告收入如下表所示:
根據(jù)這9年的數(shù)據(jù),對(duì)和作線性相關(guān)性檢驗(yàn),求得樣本相關(guān)系數(shù)的絕對(duì)值為0.243;
根據(jù)后5年的數(shù)據(jù),對(duì)和作線性相關(guān)性檢驗(yàn),求得樣本相關(guān)系數(shù)的絕對(duì)值為0.984.
(1)如果要用線性回歸方程預(yù)測(cè)該雜志社2019年的紙質(zhì)廣告收入,現(xiàn)在有兩個(gè)方案,
方案一:選取這9年數(shù)據(jù)進(jìn)行預(yù)測(cè),方案二:選取后5年數(shù)據(jù)進(jìn)行預(yù)測(cè).
從實(shí)際生活背景以及線性相關(guān)性檢驗(yàn)的角度分析,你覺(jué)得哪個(gè)方案更合適?
附:相關(guān)性檢驗(yàn)的臨界值表:
(2)某購(gòu)物網(wǎng)站同時(shí)銷(xiāo)售某本暢銷(xiāo)書(shū)籍的紙質(zhì)版本和電子書(shū),據(jù)統(tǒng)計(jì),在該網(wǎng)站購(gòu)買(mǎi)該書(shū)籍的大量讀者中,只購(gòu)買(mǎi)電子書(shū)的讀者比例為,紙質(zhì)版本和電子書(shū)同時(shí)購(gòu)買(mǎi)的讀者比例為,現(xiàn)用此統(tǒng)計(jì)結(jié)果作為概率,若從上述讀者中隨機(jī)調(diào)查了3位,求購(gòu)買(mǎi)電子書(shū)人數(shù)多于只購(gòu)買(mǎi)紙質(zhì)版本人數(shù)的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知,,過(guò)的直線與軸交于點(diǎn),與軸交于點(diǎn),記與坐標(biāo)軸圍成的三角形的面積為.
(1)若,且,求直線的方程;
(2)若、都在正半軸上,求的最小值;
(3)寫(xiě)出面積的取值范圍與直線條數(shù)的對(duì)應(yīng)關(guān)系.(不需要證明)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)為定義域R上的奇函數(shù),且在R上是單調(diào)遞增函數(shù),函數(shù),數(shù)列為等差數(shù)列,且公差不為0,若,則( )
A. 45B. 15C. 10D. 0
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)橢圓的左、右焦點(diǎn)分別為,上頂點(diǎn)為,過(guò)點(diǎn)與垂直的直線交軸負(fù)半軸于點(diǎn),且恰是的中點(diǎn),若過(guò)三點(diǎn)的圓恰好與直線相切.
(1)求橢圓的方程;
(2)若直線與橢圓交于兩點(diǎn),在軸上是否存在點(diǎn),使得以為鄰邊的平行四邊形是菱形?如果存在,求出的值;如果不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四棱錐中,底面是平行四邊形,平面,,,是棱上的一點(diǎn).
(1)證明:平面;
(2)若平面,求的值;
(3)在(2)的條件下,三棱錐的體積是18,求點(diǎn)到平面的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓 的長(zhǎng)軸長(zhǎng)為4,焦距為
(Ⅰ)求橢圓的方程;
(Ⅱ)過(guò)動(dòng)點(diǎn)的直線交軸與點(diǎn),交于點(diǎn) (在第一象限),且是線段的中點(diǎn).過(guò)點(diǎn)作軸的垂線交于另一點(diǎn),延長(zhǎng)交于點(diǎn).
(ⅰ)設(shè)直線的斜率分別為,證明為定值;
(ⅱ)求直線的斜率的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四棱錐中, , , , 平面.
(1)求證: 平面;
(2)若為線段的中點(diǎn),且過(guò)三點(diǎn)的平面與線段交于點(diǎn),確定點(diǎn)的位置,說(shuō)明理由;并求三棱錐的高.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知圓,點(diǎn)是直線l:上的動(dòng)點(diǎn),若在圓C上總存在不同的兩點(diǎn)A,B使得,則的取值范圍是_____.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com