(遼寧卷理19)如圖,在棱長為1的正方體

中,AP=BQ=b(0<b<1),截面PQEF,截面PQGH

(Ⅰ)證明:平面PQEF和平面PQGH互相垂直;

(Ⅱ)證明:截面PQEF和截面PQGH面積之和是定值,

并求出這個值;

(Ⅲ)若與平面PQEF所成的角為,求與平面PQGH所成角的正弦值.

說明:本小題主要考查空間中的線面關(guān)系,面面關(guān)系,解三角形等基礎(chǔ)知識,考查空間想象能力與邏輯思維能力。滿分12分.

解法一:(Ⅰ)證明:在正方體中,,,又由已知可得

,,

所以,,所以平面

所以平面和平面互相垂直.   4分

(Ⅱ)證明:由(Ⅰ)知,又截面PQEF和截面PQGH都是矩形,且PQ=1,所以截面PQEF和截面PQGH面積之和是,是定值.  8分

(III)解:連結(jié)BC′交EQ于點(diǎn)M.因?yàn)?sub>,所以平面和平面PQGH互相平行,因此與平面PQGH所成角與與平面所成角相等.

與(Ⅰ)同理可證EQ⊥平面PQGH,可知EM⊥平面,因此EM的比值就是所求的正弦值.

設(shè)PF于點(diǎn)N,連結(jié)EN,由

因?yàn)?i>⊥平面PQEF,又已知與平面PQEF角,

所以,即

解得,可知EBC中點(diǎn).

所以EM=,又,

與平面PQCH所成角的正弦值為.  12分

解法二:以D為原點(diǎn),射線DA,DC,DD′分別為x,y,z軸的正半軸建立如圖的空間直角坐標(biāo)系Dxyz由已知得,故

,,

,,

,

(Ⅰ)證明:在所建立的坐標(biāo)系中,可得

,

因?yàn)?sub>,所以是平面PQEF的法向量.

因?yàn)?sub>,所以是平面PQGH的法向量.

因?yàn)?sub>,所以,

所以平面PQEF和平面PQGH互相垂直.      4分

(Ⅱ)證明:因?yàn)?sub>,所以,又,所以PQEF為矩形,同理PQGH為矩形.

在所建立的坐標(biāo)系中可求得,,所以,又,

所以截面PQEF和截面PQGH面積之和為,是定值.   8分

(Ⅲ)解:由已知得角,又可得

   ,,解得

所以,又,所以與平面PQGH所成角的正弦值為

.     12分

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(遼寧卷理19)如圖,在棱長為1的正方體

中,AP=BQ=b(0<b<1),截面PQEF,截面PQGH

(Ⅰ)證明:平面PQEF和平面PQGH互相垂直;

(Ⅱ)證明:截面PQEF和截面PQGH面積之和是定值,

并求出這個值;

(Ⅲ)若與平面PQEF所成的角為,求與平面PQGH所成角的正弦值.

說明:本小題主要考查空間中的線面關(guān)系,面面關(guān)系,解三角形等基礎(chǔ)知識,考查空間想象能力與邏輯思維能力。滿分12分.

查看答案和解析>>

同步練習(xí)冊答案