【題目】在平面直角坐標(biāo)系中,已知曲線:(為參數(shù))和定點,是曲線的左、右焦點,以原點為極點,以軸的非負(fù)半軸為極軸且取相同單位長度建立極坐標(biāo)系.
(1)求直線的極坐標(biāo)方程;
(2)經(jīng)過點且與直線垂直的直線交曲線于兩點,求的值.
【答案】(1) (2)
【解析】
(1)將曲線的參數(shù)方程化為普通方程,根據(jù)橢圓的性質(zhì)得出焦點坐標(biāo),由截距式寫出直線方程,再由,化為極坐標(biāo)方程;
(2)根據(jù)題意得出直線的參數(shù)方程,并代入橢圓方程,利用韋達(dá)定理以及直線參數(shù)方程參數(shù)的幾何意義,得出的值.
(1)曲線:(為參數(shù)),可化為
焦點為和.
經(jīng)過和的直線方程為,即.
又,,
所以直線的極坐標(biāo)方程為,即.
(2)由(1)知,直線的斜率為,
因為,所以直線的斜率為,即傾斜角為
所以直線的參數(shù)方程為(為參數(shù)),
代入曲線的方程,得,
即,.
因為點在點的兩側(cè),所以.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),其中,為自然對數(shù)的底數(shù).
(1)當(dāng)時,證明:對;
(2)若函數(shù)在上存在極值,求實數(shù)的取值范圍。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列1,1,2,1,2,4,1,2,4,8,1,2,4,8,16,…,其中第一項是,接下來的兩項是,,再接下來的三項是,,,依此類推,若該數(shù)列前項和滿足:①②是2的整數(shù)次冪,則滿足條件的最小的為
A. 21B. 91C. 95D. 10
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐中,底面是平行四邊形,,,為的中點,平面且,為的中點.
(1)證明:平面;
(2)求直線與平面所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖, 在四棱錐中,為等邊三角形, 平面平面,四邊形是高為 的等腰梯形, 為的中點.
(1)求證:;
(2)求到平面的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,四棱錐的底面是菱形,底面,分別是的中點,,,.
(I)證明:;
(II)求直線與平面所成角的正弦值;
(III)在邊上是否存在點,使與所成角的余弦值為,若存在,確定點位置;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】十二生肖,又稱十二屬相,中國古人拿十二種動物來配十二地支,組成子鼠、丑牛、寅虎、卯兔、辰龍、巳蛇、午馬、未羊、申猴、酉雞、戌狗、亥豬十二屬相,F(xiàn)有十二生肖吉祥物各一件,甲、乙、丙三位同學(xué)一次隨機抽取一件作為禮物,甲同學(xué)喜歡馬、牛,乙同學(xué)喜歡馬、龍、狗,丙同學(xué)除了鼠不喜歡外其他的都喜歡,則這三位同學(xué)抽取的禮物都喜歡的概率是( )
A.B.C.D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知各項均為正整數(shù)的數(shù)列{an}的前n項和為Sn,滿足:Sn﹣1+kan=tan2﹣1,n≥2,n∈N*(其中k,t為常數(shù)).
(1)若k=,t=,數(shù)列{an}是等差數(shù)列,求a1的值;
(2)若數(shù)列{an}是等比數(shù)列,求證:k<t.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com