從發(fā)生汽車碰撞事故的司機(jī)中抽取2 000名司機(jī).根據(jù)他們的血液中是否含有酒精以及他們是否對事故負(fù)有責(zé)任.將數(shù)據(jù)整理如下:
 
有責(zé)任
無責(zé)任
合計(jì)
有酒精
650
150
800
無酒精
700
500
1 200
合計(jì)
1 350
650
2 000
那么,司機(jī)對事故負(fù)有責(zé)任與血液中含有酒精是否有關(guān)系?
有99%的把握認(rèn)為“對事故負(fù)有責(zé)任與血液中含有酒精之間有關(guān)系”

解:依據(jù)公式得
χ2≈114.738>6.635.
∴有99%的把握認(rèn)為“對事故負(fù)有責(zé)任與血液中含有酒精之間有關(guān)系”.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

某公司生產(chǎn)產(chǎn)品A,產(chǎn)品質(zhì)量按測試指標(biāo)分為:指標(biāo)大于或等于90為一等品,大于或等于小于為二等品,小于為三等品,生產(chǎn)一件一等品可盈利50元,生產(chǎn)一件二等品可盈利元,生產(chǎn)一件三等品虧損10元.現(xiàn)隨機(jī)抽查熟練工人甲和新工人乙生產(chǎn)的這種產(chǎn)品各100件進(jìn)行檢測,檢測結(jié)果統(tǒng)計(jì)如下:
測試指標(biāo)







3
7
20
40
20
10

5
15
35
35
7
3
 
根據(jù)上表統(tǒng)計(jì)得到甲、乙兩人生產(chǎn)產(chǎn)品A為一等品、二等品、三等品的頻率分別估計(jì)為他們生產(chǎn)產(chǎn)品A為一等品、二等品、三等品的概率.
(1)計(jì)算甲生產(chǎn)一件產(chǎn)品A,給工廠帶來盈利不小于30元的概率;
(2)若甲一天能生產(chǎn)20件產(chǎn)品A,乙一天能生產(chǎn)15件產(chǎn)品A,估計(jì)甲乙兩人一天生產(chǎn)的35件產(chǎn)品A中三等品的件數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖所示的莖葉圖記錄了甲、乙兩組各四名同學(xué)的投籃命中次數(shù),乙組記錄中有一個數(shù)據(jù)模糊,無法確認(rèn),在圖中以表示.

(1)如果乙組同學(xué)投籃命中次數(shù)的平均數(shù)為,求及乙組同學(xué)投籃命中次數(shù)的方差;
(2)在(1)的條件下,分別從甲、乙兩組投籃命中次數(shù)低于10次的同學(xué)中,各隨機(jī)選取一名,求這兩名同學(xué)的投籃命中次數(shù)之和為17的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

一汽車廠生產(chǎn)、三類轎車,每類轎車均有舒適型和標(biāo)準(zhǔn)型兩種型號,某月的產(chǎn)量如下表(單位:輛)
 
轎車
轎車
轎車
舒適型



標(biāo)準(zhǔn)型



按類型分層抽樣的方法在這個月生產(chǎn)的轎車中抽取輛,其中有類轎車輛.
(1)求的值;
(2)用分層抽樣的方法在類轎車中抽取一個容量為的樣本.將該樣本看成一個總體,從中任取輛,求至少有輛舒適型轎車的概率;
(3)用隨機(jī)抽樣的方法從類舒適型轎車中抽取輛,經(jīng)檢測它們的得分如下:、、、、、.把這輛轎車的得分看作一個總體,從中任取一個數(shù),求該數(shù)與樣本平均數(shù)之差的絕對值
不超過的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

某學(xué)校高一年學(xué)生在某次數(shù)學(xué)單元測試中,成績在的頻數(shù)分布表如下:
分?jǐn)?shù)



頻數(shù)
60
20
20
 
(1)用分層抽樣的方法從成績在的同學(xué)中共抽取人,其中成績在的有幾人?
(2)從(1)中抽出的人中,任取人,求成績在中各有人的概率?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

對有線性相關(guān)關(guān)系的兩個變量建立的線性回歸方程x,關(guān)于回歸系數(shù),下面敘述正確的是________.
①可以小于0;②大于0;③能等于0;④只能小于0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

某大學(xué)對名學(xué)生的自主招生水平測試成績進(jìn)行統(tǒng)計(jì),得到樣本頻率分布直方圖(如圖),則這名學(xué)生在該次自主招生水平測試中成績不低于分的學(xué)生數(shù)是(     )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

對有關(guān)數(shù)據(jù)的分析可知,每一立方米混凝土的水泥用量x(單位:kg)與28天后混凝土的抗壓度y(單位:kg/cm2)之間具有線性相關(guān)關(guān)系,其線性回歸方程為=0.30x+9.99.根據(jù)建設(shè)項(xiàng)目的需要,28天后混凝土的抗壓度不得低于89.7 kg/cm2,每立方米混凝土的水泥用量最少應(yīng)為________kg.(精確到0.1 kg)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

考查某班學(xué)生數(shù)學(xué)、外語成績得到2×2列聯(lián)表如:
 
數(shù)優(yōu)
數(shù)差
總計(jì)
外優(yōu)
34
17
51
外差
15
19
34
總計(jì)
49
36
85
那么,隨機(jī)變量χ2等于________.

查看答案和解析>>

同步練習(xí)冊答案