(2012•自貢三模)己知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)的離心率為e=
3
3
,以原點(diǎn)為圓心,橢圓短半軸長(zhǎng)為半徑的圓與直線x-y+2=0相切,A,B分別是橢圓的左右兩個(gè)頂點(diǎn),P為橢圓C上的動(dòng)點(diǎn).
(I)求橢圓的標(biāo)準(zhǔn)方程;
(II) M為過(guò)P且垂直于x軸的直線上的點(diǎn),若
|OP|
|OM|
=λ,求點(diǎn)M的軌跡方程,并說(shuō)明軌跡是什么曲線.
分析:(I)寫(xiě)出圓的方程,利用直線與圓相切的充要條件列出方程求出b的值,利用橢圓的離心率公式得到a,c的關(guān)系,再利用橢圓本身三個(gè)參數(shù)的關(guān)系求出a,c的值,將a,b的值代入橢圓的方程即可.
(II)設(shè)出M的坐標(biāo),求出P的坐標(biāo),利用兩點(diǎn)的距離公式將已知的幾何條件用坐標(biāo)表示,通過(guò)對(duì)參數(shù)λ的討論,判斷出M的軌跡.
解答:解:(Ⅰ)由題意,以原點(diǎn)為圓心,橢圓短半軸長(zhǎng)為半徑的圓的方程為x2+y2=b2,
∵直線x-y+2=0與圓相切,∴d=
2
2
=b,即b=
2
,
又e=
3
3
,即a=
3
c,
∵a2=b2+c2
∴a=
3
,c=1,
∴橢圓方程為
x2
3
+
y2
2
=1
. 
(Ⅱ)設(shè)M(x,y),其中x∈[-
3
3
].
由已知
|OP|2
|OM|2
=λ2
及點(diǎn)點(diǎn)P在橢圓C上可得
x2+2-
2
3
x2
x2+y2
=
x2+6
3(x2+y2)
2,
整理得(3λ2-1)x2+3λ2y2=6,其中x∈[-
3
,
3
].
①當(dāng)λ=
3
3
時(shí),化簡(jiǎn)得y2=6,
∴點(diǎn)M軌跡方程為y=±
6
-
3
≤x≤
3
),軌跡是兩條平行于x的線段;
②當(dāng)λ≠
3
3
時(shí)時(shí),方程變形為
x2
6
3λ2-1
+
y2
6
3λ2
=1
,其中x∈[-
3
,
3
].
當(dāng)0<λ<
3
3
時(shí),點(diǎn)M軌跡為中心在原點(diǎn)、實(shí)軸在y軸上的雙曲線滿足-
3
≤x≤
3
的部分;
當(dāng)
3
3
<λ<1
時(shí),點(diǎn)M軌跡為中心在原點(diǎn)、長(zhǎng)軸在x上的橢圓滿足-
3
≤x≤
3
的部分;
當(dāng)λ≥1時(shí),點(diǎn)M軌跡為中心在原點(diǎn)、長(zhǎng)軸在x上的橢圓.
點(diǎn)評(píng):本題重點(diǎn)考查圓錐曲線的方程,考查直線與圓錐曲線的位置關(guān)系,考查分類(lèi)討論的數(shù)學(xué)思想,解題的關(guān)鍵是利用待定系數(shù)法求圓錐曲線的方程.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•自貢三模)對(duì)于三次函數(shù)f(x)=ax3+bx2+cx+d(a≠0),定義f′(x)是y=f(x)的導(dǎo)函數(shù)y=f′(x)的導(dǎo)函數(shù),若方程f′(x)=0有實(shí)數(shù)解x0,則稱點(diǎn)(x0,f(x0))為函數(shù)y=f(x)的“拐點(diǎn)”,可以發(fā)現(xiàn),任何三次函數(shù)都有“拐點(diǎn)”,任何三次函數(shù)都有對(duì)稱中心,且“拐點(diǎn)”就是對(duì)稱中心,請(qǐng)你根據(jù)這一發(fā)現(xiàn)判斷下列命題:
①任意三次函數(shù)都關(guān)于點(diǎn)(-
b
3a
,f(-
b
3a
))對(duì)稱:
②存在三次函數(shù)f′(x)=0有實(shí)數(shù)解x0,點(diǎn)(x0,f(x0))為函數(shù)y=f(x)的對(duì)稱中心;
③存在三次函數(shù)有兩個(gè)及兩個(gè)以上的對(duì)稱中心;
④若函數(shù)g(x)=
1
3
x3-
1
2
x2-
5
12
,則,g(
1
2012
)+g(
2
2012
)+g(
3
2012
)+…+g(
2011
2012
)=-105.5.
其中正確命題的序號(hào)為
①②④
①②④
(把所有正確命題的序號(hào)都填上).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•自貢三模)已知G是△ABC的重心,且a
GA
+b
GB
+
3
c
GC
=
0
,其中a,b,c分別為角A、B、C的對(duì)邊,則cosc=( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•自貢三模)在三棱錐A-BCD中,側(cè)棱AB、AC、AD兩兩垂直,△ABC,△ACD,△ADB的面積分別為
2
2
3
2
,
6
2
,則三棱錐A-BCD的外接球的體積為
6
π
6
π

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•自貢三模)已知圓C:(x-a)2+(y-2)2=4(a>0)及直線l:x-y+3=0,當(dāng)直線l被C截得弦長(zhǎng)為2
3
時(shí),則a=
2
-1
2
-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•自貢三模)若(x2+
1
ax
)6
的展開(kāi)式中的常數(shù)項(xiàng)為
15
16
,則實(shí)數(shù)a
±2
±2

查看答案和解析>>

同步練習(xí)冊(cè)答案