【題目】設(shè)函數(shù) f(x)=,其中 c>a>0,c>b>0.若 a,b,c 是△ABC 的三條邊長(zhǎng),給出下列命題:
①對(duì)于x∈(-∞,1),都有 f(x)>0;
②存在 x>0,使,,不能構(gòu)成一個(gè)三角形的三邊長(zhǎng);
③若△ABC 為鈍角三角形,則存在 x∈(1,2),使 f(x)=0.
則其中所有正確結(jié)論的序號(hào)是__________.
【答案】①②③.
【解析】
①利用指數(shù)函數(shù)的性質(zhì)以a.b.c構(gòu)成三角形的條件進(jìn)行證明;②由于涉及不可能問(wèn)題,因此可以舉反例進(jìn)行判斷;③利用函數(shù)零點(diǎn)的存在性定理進(jìn)行判斷.
①因?yàn)?/span> a,b,c 是△ABC 的三條邊長(zhǎng),所以 a+b>c,因?yàn)?/span> c>a>0,c>b>0,所以
,,當(dāng) x∈(-∞,1)時(shí),f(x)==
,故①正確;
②令 a=2,b=3,c=4,則 a,b,c 可以構(gòu)成三角形,但=4,=9,=16 卻不能 構(gòu)成三角形,所以②正確;
③已知 c>a>0,c>b>0,若△ABC 為鈍角三角形,則 +-<0,因?yàn)?/span> f(1)=a+b-c>0,f(2)=+-<0,根據(jù)零點(diǎn)的存在性定理可知在區(qū)間(1,2)上存在零點(diǎn),所以存在 x∈ (1,2),使 f(x)=0,故③正確.
故答案為:①②③.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)若函數(shù)的最小值是,且,,求的值;
(2)若,且在區(qū)間上恒成立,試求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在直角坐標(biāo)系xOy中,圓C1和C2的參數(shù)方程分別是 (φ為參數(shù))和 (φ為參數(shù)),以O(shè)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系.
(1)求圓C1和C2的極坐標(biāo)方程;
(2)射線OM:θ=a與圓C1的交點(diǎn)為O、P,與圓C2的交點(diǎn)為O、Q,求|OP||OQ|的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖(1),五邊形PABCD是由一個(gè)正方形與一個(gè)等腰三角形拼接而成,其中∠APD=120°,AB=2,現(xiàn)將△PAD進(jìn)行翻折,使得平面PAD⊥平面ABCD,連接PB,PC,所得四棱錐P﹣ABCD如圖(2)所示,則四棱錐P﹣ABCD的外接球的表面積為( )
A.
B.
C.
D.14π
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某玩具所需成本費(fèi)用為P元,且P=1 000+5x+x2,而每套售出的價(jià)格為Q元,其中Q(x)=a+ (a,b∈R),
(1)問(wèn):玩具廠生產(chǎn)多少套時(shí),使得每套所需成本費(fèi)用最少?
(2)若生產(chǎn)出的玩具能全部售出,且當(dāng)產(chǎn)量為150套時(shí)利潤(rùn)最大,此時(shí)每套價(jià)格為30元,求a,b的值.(利潤(rùn)=銷售收入-成本).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知某蔬菜商店買進(jìn)的土豆x(噸)與出售天數(shù)y(天)之間的關(guān)系如表所示:
x | 2 | 3 | 4 | 5 | 6 | 7 | 9 | 12 |
y | 1 | 2 | 3 | 3 | 4 | 5 | 6 | 8 |
(Ⅰ)請(qǐng)根據(jù)表中數(shù)據(jù)在所給網(wǎng)格中繪制散點(diǎn)圖;
(Ⅱ)請(qǐng)根據(jù)表中提供的數(shù)據(jù),用最小二乘法求出y關(guān)于x的線性回歸方程 (其中 保留2位有效數(shù)字);
(Ⅲ)根據(jù)(Ⅱ)中的計(jì)算結(jié)果,若該蔬菜商店買進(jìn)土豆40噸,則預(yù)計(jì)可以銷售多少天(計(jì)算結(jié)果保留整數(shù))?
附: , .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了調(diào)查高一新生中女生的體重情況,校衛(wèi)生室隨機(jī)選20名女生作為樣本,測(cè)量她們的體重(單位:kg),獲得的所有數(shù)據(jù)按照區(qū)間, , , 進(jìn)行分組,得到頻率分布直方圖如圖所示,已知樣本中體重在區(qū)間上的女生數(shù)與體重在區(qū)間上的女生數(shù)之比為.
(1)求的值;
(2)從樣本中體重在區(qū)間上的女生中隨機(jī)抽取兩人,求體重在區(qū)間上的女生至少有一人被抽中的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知圓C:(x﹣1)2+y2=16,F(xiàn)(﹣1,0),M是圓C上的一個(gè)動(dòng)點(diǎn),線段MF的垂直平分線與線段MC相交于點(diǎn)P.
(Ⅰ)求點(diǎn)P的軌跡方程;
(Ⅱ)記點(diǎn)P的軌跡為C1 , A、B是直線x=﹣2上的兩點(diǎn),滿足AF⊥BF,曲線C1與過(guò)A,B的兩條切線(異于x=﹣2)交于點(diǎn)Q,求四邊形AQBF面積的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某商場(chǎng)為了了解顧客的購(gòu)物信息,隨機(jī)在商場(chǎng)收集了位顧客購(gòu)物的相關(guān)數(shù)據(jù)如下表:
一次購(gòu)物款(單位:元) | |||||
顧客人數(shù) |
統(tǒng)計(jì)結(jié)果顯示位顧客中購(gòu)物款不低于元的顧客占,該商場(chǎng)每日大約有名顧客,為了增加商場(chǎng)銷售額度,對(duì)一次購(gòu)物不低于元的顧客發(fā)放紀(jì)念品.
(Ⅰ)試確定, 的值,并估計(jì)每日應(yīng)準(zhǔn)備紀(jì)念品的數(shù)量;
(Ⅱ)現(xiàn)有人前去該商場(chǎng)購(gòu)物,求獲得紀(jì)念品的數(shù)量的分布列與數(shù)學(xué)期望.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com