【題目】已知函數(shù)
(I)當(dāng)時,求的單調(diào)區(qū)間;
(Ⅱ)若函數(shù)在上單調(diào)遞增,試求出的取值范圍.
【答案】(Ⅰ)單調(diào)遞增區(qū)間是,單調(diào)遞減區(qū)間是和.(Ⅱ) .
【解析】試題分析:(1)先求導(dǎo)數(shù),再求導(dǎo)函數(shù)零點,列表分析導(dǎo)函數(shù)符號變化規(guī)律,最后根據(jù)導(dǎo)函數(shù)符號確定單調(diào)區(qū)間,(2)由題意得在區(qū)間恒成立,再變量分離得,最后根據(jù)二次函數(shù)性質(zhì)求最值,得的取值范圍.
試題解析:(I)當(dāng)時,函數(shù)
令即解得
令解得或
所以當(dāng)時,函數(shù)的單調(diào)遞增區(qū)間是,
單調(diào)遞減區(qū)間是和.
(Ⅱ)法一:
函數(shù)在上單調(diào)遞增,
等價于在區(qū)間恒成立,
等價于在區(qū)間恒成立.
等價于
令
因為
所以函數(shù)在區(qū)間上單調(diào)遞增,
故
所以的取值范圍是
法二:
函數(shù)在上單調(diào)遞增,
等價于在區(qū)間恒成立,
令
則命題等價于在區(qū)間恒成立.
當(dāng)時,由解得
當(dāng)時因為函數(shù)圖像的對稱軸
此時只有滿足,解得.
綜上所述的取值范圍是
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在如圖所示的幾何體中,四邊形為正方形,四邊形為直角梯形, , .
(1)求與平面所成角的正弦值;
(2)線段或其延長線上是否存在點,使平面平面?證明你的結(jié)論.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,ABCD與ADEF為平行四邊形,M,N,G分別是AB,AD,EF的中點.求證:
(1)BE∥平面DMF;
(2)平面BDE∥平面MNG.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓上的焦點為,離心率為.
(1)求橢圓方程;
(2)設(shè)過橢圓頂點,斜率為的直線交橢圓于另一點,交軸于點,且, , 成等比數(shù)列,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線的頂點在坐標(biāo)原點,焦點在軸上,且過點.
(I)求的標(biāo)準(zhǔn)方程;
(Ⅱ)若為坐標(biāo)原點, 是的焦點,過點且傾斜角為的直線交于, 兩點,求的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)是定義在上的偶函數(shù),且對任意的恒有,已知當(dāng)時,,則下列命題:
①對任意,都有;②函數(shù)在上遞減,在上遞增;
③函數(shù)的最大值是1,最小值是0;④當(dāng)時,.
其中正確命題的序號有________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系xOy中,已知⊙O的方程x2+y2=4,直線l:x=4,在以O(shè)為極點,x軸的正半軸為極軸的極坐標(biāo)系中,過極點作射線交⊙O于A,交直線l于B.
(1)寫出⊙O及直線l的極坐標(biāo)方程;
(2)設(shè)AB中點為M,求動點M的軌跡方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知銳角△ABC中內(nèi)角A、B、C所對邊的邊長分別為a、b、c,滿足a2+b2=6abcosC,且 .
(1)求角C的值;
(2)設(shè)函數(shù) ,圖象上相鄰兩最高點間的距離為π,求f(A)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】將一個半徑為3分米,圓心角為α(α∈(0,2π))的扇形鐵皮焊接成一個容積為V立方分米的圓錐形無蓋容器(忽略損耗).
(1)求V關(guān)于α的函數(shù)關(guān)系式;
(2)當(dāng)α為何值時,V取得最大值;
(3)容積最大的圓錐形容器能否完全蓋住桌面上一個半徑為0.5分米的球?請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com