【題目】為提高產(chǎn)品質(zhì)量,某企業(yè)質(zhì)量管理部門經(jīng)常不定期地抽查產(chǎn)品進(jìn)行檢測(cè),現(xiàn)在某條生產(chǎn)線上隨機(jī)抽取100個(gè)產(chǎn)品進(jìn)行相關(guān)數(shù)據(jù)的對(duì)比,并對(duì)每個(gè)產(chǎn)品進(jìn)行綜合評(píng)分(滿分100分),將每個(gè)產(chǎn)品所得的綜合評(píng)分制成如圖所示的頻率分布直方圖.記綜合評(píng)分為80分及以上的產(chǎn)品為一等品.
(1)求圖中的值,并求綜合評(píng)分的中位數(shù);
(2)用樣本估計(jì)總體,以頻率作為概率,按分層抽樣的思想,先在該條生產(chǎn)線中隨機(jī)抽取5個(gè)產(chǎn)品,再從這5個(gè)產(chǎn)品中隨機(jī)抽取2個(gè)產(chǎn)品記錄有關(guān)數(shù)據(jù),求這2個(gè)產(chǎn)品中恰有一個(gè)一等品的概率.
【答案】(1) ;中位數(shù)為82.5. (2)
【解析】
(1)根據(jù)頻率之和為1,結(jié)合頻率分布直方圖對(duì)應(yīng)矩形區(qū)域面積求解即可;先結(jié)合數(shù)值預(yù)判中位數(shù)所在組距應(yīng)在80到90之間,設(shè)綜合評(píng)分的中位數(shù)為,結(jié)合頻率計(jì)算公式求解即可;
(2)先結(jié)合分層抽樣計(jì)算出一等品所占比例,再采用列舉法表示出所有基本事件,結(jié)合古典概率公式求解即可
(1)由頻率和為1,得,;
設(shè)綜合評(píng)分的中位數(shù)為,則,解得,
所以綜合評(píng)分的中位數(shù)為82.5.
(2)由頻率分布直方圖知,一等品的頻率為,即概率為0.6;
所以100個(gè)產(chǎn)品中一等品有60個(gè),非一等品有40個(gè),則一等品與非一等品的抽樣比為3:2;
所以現(xiàn)抽取5個(gè)產(chǎn)品,一等品有3個(gè),記為、、,非一等品2個(gè),記為、;
從這5個(gè)產(chǎn)品中隨機(jī)抽取2個(gè),基本事件為:、、、、、、、、、共10種;
抽取的這2個(gè)產(chǎn)品中恰有一個(gè)一等品的事件為:、、、、、共6種,
所以所求的概率為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)復(fù)數(shù)與復(fù)平面上點(diǎn)對(duì)應(yīng).
(1)若是關(guān)于的一元二次方程的一個(gè)虛根,且,求實(shí)數(shù)的值;
(2)設(shè)復(fù)數(shù)滿足條件(其中、常數(shù)),當(dāng)為奇數(shù)時(shí),動(dòng)點(diǎn)的軌跡為,當(dāng)為偶數(shù)時(shí),動(dòng)點(diǎn)的軌跡為,且兩條曲線都經(jīng)過點(diǎn),求軌跡與的方程;
(3)在(2)的條件下,軌跡上存在點(diǎn),使點(diǎn)與點(diǎn)的最小距離不小于,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】命題:方程表示焦點(diǎn)在軸上的雙曲線:命題:若存在,使得成立.
(1)如果命題是真命題,求實(shí)數(shù)的取值范圍;
(2)如果“”為假命題,“”為真命題,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè),是函數(shù)的圖象上任意兩點(diǎn),若為,的中點(diǎn),且的橫坐標(biāo)為.
(1)求;
(2)若,,求;
(3)已知數(shù)列的通項(xiàng)公式(,),數(shù)列的前項(xiàng)和為,若不等式對(duì)任意恒成立,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)f(x)是定義在實(shí)數(shù)集R上的函數(shù),且y=f(x+1)是偶函數(shù),當(dāng)x≥1時(shí),f(x)=2x﹣1,則f(),f(),f()的大小關(guān)系是( 。
A. f()<f()<f() B. f()<f()<f()
C. f()<f()<f() D. f()<f()<f()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知?jiǎng)訄A過點(diǎn)且與直線相切,圓心的軌跡為曲線.
(1)求曲線的方程;
(2)若,是曲線上的兩個(gè)點(diǎn)且直線過的外心,其中為坐標(biāo)原點(diǎn),求證:直線過定點(diǎn).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在正方體中,E、F、G、H分別是棱、、、的中點(diǎn).
(1)判斷直線與的位置關(guān)系,并說明理由;
(2)求異面直線與所成的角的大小.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)數(shù)列的前n項(xiàng)和為,對(duì)任意的正整數(shù)n,都有成立,記.
(1)求數(shù)列與數(shù)列的通項(xiàng)公式;
(2)求證:①對(duì)恒成立.②對(duì)恒成立,其中為數(shù)列的前n項(xiàng)和.
(3)記,為的前n項(xiàng)和,求證:對(duì)任意正整數(shù)n,都有.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,某小區(qū)準(zhǔn)備將閑置的一直角三角形地塊開發(fā)成公共綠地,圖中.設(shè)計(jì)時(shí)要求綠地部分(如圖中陰影部分所示)有公共綠地走道,且兩邊是兩個(gè)關(guān)于走道對(duì)稱的三角形(和).現(xiàn)考慮方便和綠地最大化原則,要求點(diǎn)與點(diǎn)均不重合,落在邊上且不與端點(diǎn)重合,設(shè).
(1)若,求此時(shí)公共綠地的面積;
(2)為方便小區(qū)居民的行走,設(shè)計(jì)時(shí)要求的長(zhǎng)度最短,求此時(shí)綠地公共走道的長(zhǎng)度.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com