【題目】已知正項(xiàng)等比數(shù)列{an}的前n項(xiàng)和為Sn , 且a2a3=a5 , S4=10S2
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)bn=(2n﹣1)an , 求數(shù)列{bn}的前n項(xiàng)和Tn

【答案】
(1)解:正項(xiàng)等比數(shù)列{an}的公比設(shè)為q,

由a2a3=a5,S4=10S2,

可得a12q3=a1q4,a1(1+q+q2+q3)=10a1(1+q),

解得a1=q=3,(q=1舍去),

則an=a1qn﹣1=3n


(2)解:bn=(2n﹣1)an=(2n﹣1)3n,

前n項(xiàng)和Tn=13+332+…+(2n﹣1)3n,

3Tn=132+333+…+(2n﹣1)3n+1,

相減可得﹣2Tn=13+2(32+…+3n)﹣(2n﹣1)3n+1

=3+2 ﹣(2n﹣1)3n+1,

化簡可得Tn=3+(n﹣1)3n+1


【解析】(1)正項(xiàng)等比數(shù)列{an}的公比設(shè)為q,運(yùn)用等比數(shù)列的通項(xiàng)公式,解方程可得首項(xiàng)和公比,進(jìn)而得到所求通項(xiàng);(2)bn=(2n﹣1)an=(2n﹣1)3n,運(yùn)用數(shù)列的求和方法:錯(cuò)位相減法,結(jié)合等比數(shù)列的求和公式,化簡整理,即可得到所求和.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某產(chǎn)品在某銷售點(diǎn)的零售價(jià)x(單位:元)與每天的銷售量y(單位:個(gè))的統(tǒng)計(jì)數(shù)據(jù)如表所示:

x

16

17

18

19

y

50

34

41

31

由表可得回歸直線方程 中的 ,根據(jù)模型預(yù)測(cè)零售價(jià)為20元時(shí),每天的銷售量約為(
A.30
B.29
C.27.5
D.26.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為方便市民休閑觀光,市政府計(jì)劃在半徑為200米,圓心角為120°的扇形廣場(chǎng)內(nèi)(如圖所示),沿△ABC邊界修建觀光道路,其中A、B分別在線段CP、CQ上,且A、B兩點(diǎn)間距離為定長 米.
(1)當(dāng)∠BAC=45°時(shí),求觀光道BC段的長度;
(2)為提高觀光效果,應(yīng)盡量增加觀光道路總長度,試確定圖中A、B兩點(diǎn)的位置,使觀光道路總長度達(dá)到最長?并求出總長度的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,四棱錐P﹣ABCD中,PA⊥平面ABCD,底面ABCD是邊長為2的正方形,PA=AD,F(xiàn)為PD的中點(diǎn).
(1)求證:AF⊥平面PDC;
(2)求直線AC與平面PCD所成角的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知等比數(shù)列{an}滿足a1=2,a2=4(a3﹣a4),數(shù)列{bn}滿足bn=3﹣2log2an
(1)求數(shù)列{an},{bn}的通項(xiàng)公式;
(2)令cn= ,求數(shù)列{cn}的前n項(xiàng)和Sn;
(3)若λ>0,求對(duì)所有的正整數(shù)n都有2λ2﹣kλ+2>a2nbn成立的k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)a、b表示兩條直線,α、β表示兩個(gè)平面,則下列命題正確的是 . (填寫所有正確命題的序號(hào)) ①若a∥b,a∥α,則b∥α; ②若a∥b,aα,b⊥β,則α⊥β;
③若α∥β,a⊥α,則a⊥β;④若α⊥β,a⊥b,a⊥α,則b⊥β.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知圓C的圓心在射線y=2x﹣3(x≥0),且與直線y=x+2和y=﹣x+4都相切.
(1)求圓C的方程;
(2)若P(x,y)是圓C上任意一點(diǎn),求x+2y的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】不等式(x+5)(3﹣2x)≤6的解集是(
A.{x|x≤﹣1或x }
B.{x|﹣1≤x }?
C.{x|x 或x≥﹣1}
D.{x| ?x≤﹣1}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】兒童乘坐火車時(shí),若身高不超過1.1m,則不需買票;若身高超過1.1m但不超過1.4m,則需買半票;若身高超過1.4m,則需買全票.試設(shè)計(jì)一個(gè)買票的算法,并寫出相應(yīng)的程序.

查看答案和解析>>

同步練習(xí)冊(cè)答案