精英家教網 > 高中數學 > 題目詳情

【題目】在如圖所示的幾何體中,四邊形為平行四邊形,平面,,.

1)若是線段的中點,求證:平面;

2)若,求二面角的余弦值.

【答案】1)詳見解析;(2.

【解析】

試題(1)連接,利用平行線的傳遞性結合得到,再利用點的中點得到,從而證明四邊形為平行四邊形,從而得到,最終結合直線與平面的判定定理證明平面;(2)建立以點為坐標原點,以、所在直線為軸、軸、軸的空間直角坐標系,利用空間向量法來求二面角的余弦值.

試題解析:(1,,,,

,

由于,因此連接,由于,

在平行四邊形中,是線段的中點,則,且

因此,,所以四邊形為平行四邊形,,

平面,平面,平面;

2,,

平面、兩兩垂直。

分別以、所在直線為軸、軸、軸建立如圖所示的空間直角坐標系,

、、、,

,,又,,.

設平面的法向量

,,取,得,所以

設平面的法向量,則

,,取,得,所以,

所以

故二面角的余弦值為.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】已知F1,F2分別是雙曲線C的左、右焦點,若F2關于漸近線的對稱點恰落在以F1為圓心,|OF1|為半徑的圓上,則雙曲線C的離心率為________

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在直三棱柱中,為正三角形,點在棱上,且,點、分別為棱、的中點.

1)證明:平面

2)若,求直線與平面所成的角的正弦值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數.

(1)若函數上是增函數,求實數的取值范圍;

(2)若函數上的最小值為3,求實數的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某班主任利用周末時間對該班級年最后一次月考的語文作文分數進行統(tǒng)計,發(fā)現分數都位于之間,現將所有分數情況分為、、、、、共七組,其頻率分布直方圖如圖所示,已知.

1)求頻率分布直方圖中、的值;

2)求該班級這次月考語文作文分數的平均數和中位數.(每組數據用該組區(qū)間中點值作為代表)

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖所示,四棱錐中,底面為矩形, 平面, ,點的中點.

)求證: 平面

)求證:平面平面

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】為了解廣大學生家長對校園食品安全的認識,某市食品安全檢測部門對該市家長進行了一次校園食品安全網絡知識問卷調查,每一位學生家長僅有一次參加機會,現對有效問卷進行整理,并隨機抽取出了200份答卷,統(tǒng)計這些答卷的得分(滿分:100分)制出的頻率分布直方圖如圖所示,由頻率分布直方圖可以認為,此次問卷調查的得分服從正態(tài)分布,其中近似為這200人得分的平均值(同一組數據用該組區(qū)間的中點值作為代表).

1)請利用正態(tài)分布的知識求;

2)該市食品安全檢測部門為此次參加問卷調查的學生家長制定如下獎勵方案:

①得分不低于的可以獲贈2次隨機話費,得分低于的可以獲贈1次隨機話費:

②每次獲贈的隨機話費和對應的概率為:

獲贈的隨機話費(單位:元)

概率

市食品安全檢測部門預計參加此次活動的家長約5000人,請依據以上數據估計此次活動可能贈送出多少話費?

附:①;②若;則,.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數

1)當時,求的單調區(qū)間.

2)設直線是曲線的切線,若的斜率存在最小值-2,求的值,并求取得最小斜率時切線的方程.

3)已知分別在,處取得極值,求證:

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】,

(Ⅰ)如果存在x1x2∈[0,2],使得g(x1)-g(x2)≥M成立,求滿足上述條件的最大整數M;

(Ⅱ)如果對于任意的都有f(s)≥g(t)成立,求實數a的取值范圍.

查看答案和解析>>

同步練習冊答案