【題目】某三棱錐的三視圖如圖所示,則該三棱錐最長(zhǎng)的棱的棱長(zhǎng)為( )

A. 3 B. C. D. 2

【答案】A

【解析】由三視圖可得幾何體的直觀圖如圖所示:

有: ABC, ABC中, 邊上的高為2,

所以.

該三棱錐最長(zhǎng)的棱的棱長(zhǎng)為.

故選A.

點(diǎn)睛; 思考三視圖還原空間幾何體首先應(yīng)深刻理解三視圖之間的關(guān)系,遵循“長(zhǎng)對(duì)正,高平齊,寬相等”的基本原則,其內(nèi)涵為正視圖的高是幾何體的高,長(zhǎng)是幾何體的長(zhǎng);俯視圖的長(zhǎng)是幾何體的長(zhǎng),寬是幾何體的寬;側(cè)視圖的高是幾何體的高,寬是幾何體的寬.由三視圖畫(huà)出直觀圖的步驟和思考方法:1、首先看俯視圖,根據(jù)俯視圖畫(huà)出幾何體地面的直觀圖;2、觀察正視圖和側(cè)視圖找到幾何體前、后、左、右的高度;3、畫(huà)出整體,然后再根據(jù)三視圖進(jìn)行調(diào)整.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如果函數(shù)f(x)=x3x滿足:對(duì)于任意的x1,x2∈[0,2],都有|f(x1)-f(x2)|≤a2恒成立,則a的取值范圍是(  )

A. [- ]

B. [-, ]

C. (-∞,- ]∪[,+∞)

D. (-∞,- ]∪[,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】數(shù)列 滿足: , 或1().對(duì)任意,都存在,使得.,其中 且兩兩不相等.

(I)若.寫(xiě)出下列三個(gè)數(shù)列中所有符合題目條件的數(shù)列的序號(hào);

①1,1,1,2,2,2;②1,1,1,1,2,2,2,2;③1,l,1,1,1,2,2,2,2

(Ⅱ)記.若,證明:

(Ⅲ)若,求的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知棱長(zhǎng)為1的正方體ABCDA1B1C1D1中,E,FM分別是線段AB、AD、AA1的中點(diǎn),又P、Q分別在線段A1B1、A1D1上,且A1PA1Qx(0<x<1).設(shè)平面MEF∩平面MPQ

l,現(xiàn)有下列結(jié)論:

l∥平面ABCD;

lAC

③直線l與平面BCC1B1不垂直;

④當(dāng)x變化時(shí),l不是定直線.

其中不成立的結(jié)論是________.(寫(xiě)出所有不成立結(jié)論的序號(hào))

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在四棱柱中,底面是正方形,且,

1)求證 ;

2)若動(dòng)點(diǎn)在棱上,試確定點(diǎn)的位置,使得直線與平面所成角的正弦值為

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某三棱錐的三視圖如圖所示,則該三棱錐最長(zhǎng)的棱的棱長(zhǎng)為( )

A. 2 B. C. D. 3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知橢圓 的離心率為,上、下頂點(diǎn)分別為、,點(diǎn)在橢圓上,且異于點(diǎn),直線與直線 分別交于點(diǎn)、,面積的最大值為.

1)求橢圓的標(biāo)準(zhǔn)方程;

2)求線段的長(zhǎng)的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,直線lyxb (b>0),拋物線Cy22px(p>0),已知點(diǎn)P(22)在拋物線C上,且拋物線C上的點(diǎn)到直線l的距離的最小值為.

(1)求直線l及拋物線C的方程;

(2)過(guò)點(diǎn)Q(2,1)的任一直線(不經(jīng)過(guò)點(diǎn)P)與拋物線C交于A,B兩點(diǎn),直線AB與直線l相交于點(diǎn)M,記直線PAPB,PM的斜率分別為k1k2,k3.問(wèn):是否存在實(shí)數(shù)λ,使得k1k2λk3?若存在,試求出λ的值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】有一矩形硬紙板材料(厚度忽略不計(jì)),一邊長(zhǎng)為6分米,另一邊足夠長(zhǎng).現(xiàn)從中截取矩形(如圖甲所示),再剪去圖中陰影部分,用剩下的部分恰好能折卷成一個(gè)底面是弓形的柱體包裝盒(如圖乙所示,重疊部分忽略不計(jì)),其中是以為圓心、的扇形,且弧,分別與邊, 相切于點(diǎn),

(1)當(dāng)長(zhǎng)為1分米時(shí),求折卷成的包裝盒的容積;

(2)當(dāng)的長(zhǎng)是多少分米時(shí),折卷成的包裝盒的容積最大?

查看答案和解析>>

同步練習(xí)冊(cè)答案