【題目】已知橢圓 =1(a>b>0)上的點到右焦點F的最小距離是 ﹣1,F(xiàn)到上頂點的距離為 ,點C(m,0)是線段OF上的一個動點.
(1)求橢圓的方程;
(2)是否存在過點F且與x軸不垂直的直線l與橢圓交于A、B兩點,使得( + )⊥ ,并說明理由.

【答案】
(1)解:由題意可知a﹣c= ﹣1且

解得a= ,b=c=1,

∴橢圓的方程為


(2)解:由(1)得F(1,0),所以0≤m≤1.

假設存在滿足題意的直線l,設l的方程為

y=k(x﹣1),代入 ,

得(2k2+1)x2﹣4k2x+2k2﹣2=0,

設A(x1,y1),B(x2,y2),

,

,

而AB的方向向量為(1,k),

∴當0≤m< 時,k=± ,即存在這樣的直線l;

≤m≤1時,k不存在,即不存在這樣的直線l


【解析】(1)由題意可知a﹣c= ﹣1且 ,解得a= ,b=c=1,由此可求出橢圓的方程.(2)假設存在滿足題意的直線l,設l的方程為y=k(x﹣1),代入 ,得(2k2+1)x2﹣4k2x+2k2﹣2=0,設A(x1 , y1),B(x2 , y2),再由根與系數(shù)的關(guān)系結(jié)合題設條件能夠?qū)С霾淮嬖谶@樣的直線l.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】已知,為常數(shù),且,

(I)若方程有唯一實數(shù)根,求函數(shù)的解析式.

(II)當時,求函數(shù)在區(qū)間上的最大值與最小值.

(III)當時,不等式恒成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,三棱柱中,,分別為棱的中點.

(1)求證:平面;

(2)若平面平面,且,求證:平面平面.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,三棱柱ABC﹣A1B1C1中,AC=AA1=2,AB=BC=2 ,∠AA1C1=60°,平面ABC1⊥平面AA1C1C,AC1與A1C相交于點D.

(1)求證:BC1⊥平面AA1C1C;
(2)求二面角C1﹣AB﹣C的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設△ABC的內(nèi)角A、B、C的對邊分別為a、b、c,且滿足sinA+sinB=[cosA﹣cos(π﹣B)]sinC.
(1)試判斷△ABC的形狀,并說明理由;
(2)若a+b+c=1+ ,試求△ABC面積的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知平面直角坐標系xOy中,過點P(﹣1,﹣2)的直線l的參數(shù)方程為 (t為參數(shù)),以原點O為極點,x軸的正半軸為極軸建立極坐標系,曲線C的極坐標方程為ρsinθtanθ=2a(a>0),直線l與曲線C相交于不同的兩點M、N.
(1)求曲線C的直角坐標方程和直線l的普通方程;
(2)若|PM|=|MN|,求實數(shù)a的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù) f(x)=ax2+2x﹣lnx(aR).

Ⅰ)若 a=4,求函數(shù) f(x)的極值

Ⅱ)若 f′(x)在區(qū)間(0,1)內(nèi)有唯一的零點 x0,求 a 的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某超市為了解端午節(jié)期間粽子的銷售量,對其所在銷售范圍內(nèi)的1000名消費者在端午節(jié)期間的粽子購買量(單位:g)進行了問卷調(diào)查,得到如圖所示的頻率分布直方圖.

(Ⅰ)求頻率分布直方圖中a的值;

(Ⅱ)求這1000名消費者的棕子購買量在600g1400g的人數(shù);

(Ⅲ)求這1000名消費者的人均粽子購買量(頻率分布直方圖中同一組的數(shù)據(jù)用該組區(qū)間的中點值作代表).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=x3ax2bxcx∈[-2,2]表示過原點的曲線,且在x=±1處的切線的傾斜角均為π,有以下命題:

f(x)的解析式為f(x)=x3-4x,x∈[-2,2].

f(x)的極值點有且只有一個.

f(x)的最大值與最小值之和等于零.

其中正確命題的序號為________

查看答案和解析>>

同步練習冊答案