【題目】某體育用品商場(chǎng)經(jīng)營(yíng)一批進(jìn)價(jià)為40元的運(yùn)動(dòng)服,經(jīng)市場(chǎng)調(diào)查發(fā)現(xiàn)銷售量y(件)與銷售單價(jià)x(元)符合一次函數(shù)模型,且銷售單價(jià)為60元時(shí),銷量是600件;當(dāng)銷售單價(jià)為64元時(shí),銷量是560.

(1)寫出銷售量y(件)與銷售單價(jià)x()之間的函數(shù)關(guān)系式;

(2)試求銷售利潤(rùn)z(元)與銷售單價(jià)x()之間的函數(shù)關(guān)系式;

(3)(1)(2)條件下,當(dāng)銷售單價(jià)為多少元時(shí),商場(chǎng)能獲得最大利潤(rùn)?并求出此最大利潤(rùn).

【答案】(1);(2) ;(3)當(dāng)時(shí),.

【解析】

1)設(shè)出一次函數(shù)的解析式,代入兩個(gè)已知條件列方程組,解方程組求得解析式.

2)用銷售量乘以每件利潤(rùn),求得銷售利潤(rùn).

3)利用配方法,求得當(dāng)為何值時(shí),利潤(rùn)最大,并求得最大利潤(rùn).

1)由于銷售量y(件)與銷售單價(jià)x(元)符合一次函數(shù)模型,故設(shè)銷售量y(件)與銷售單價(jià)x()之間的函數(shù)關(guān)系式.依題意由,解得.所以.

2)銷售量乘以每件利潤(rùn)得.

3)由(2)得.故當(dāng)時(shí),利潤(rùn)取得最大值為.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知兩點(diǎn)

(1)求過AB中點(diǎn),且在兩坐標(biāo)軸上截距相等的直線的方程;

(2)求過原點(diǎn),且A、B兩點(diǎn)到該直線距離相等的直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

(1)求的定義域;

(2)判斷的奇偶性并給予證明;

(3)求關(guān)于x的不等式的解集.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,在四棱錐P—ABCD中,底面ABCD是矩形,側(cè)棱PA垂直于底面,E、F分別是AB、PC的中點(diǎn),PAAD.

求證:(1)CD⊥PD;(2)EF⊥平面PCD.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),且

(1)求的值;

(2)畫出圖像,并寫出單調(diào)遞增區(qū)間(不需要說明理由);

(3)若,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列關(guān)于相關(guān)系數(shù)的說法不正確的是( )

A. 相關(guān)系數(shù)越大兩個(gè)變量間相關(guān)性越強(qiáng);

B. 相關(guān)系數(shù)的取值范圍為;

C. 相關(guān)系數(shù)時(shí)兩個(gè)變量正相關(guān),時(shí)兩個(gè)變量負(fù)相關(guān);

D. 相關(guān)系數(shù)時(shí),樣本點(diǎn)在同一直線上。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】有甲、乙兩隊(duì)學(xué)生參加“知識(shí)聯(lián)想”搶答賽,比賽規(guī)則:①主持人依次給出兩次提示,第一次提示后答對(duì)得2分,第二次提示后答對(duì)得1分,沒搶到或答錯(cuò)者不得分;②主持人給出第一個(gè)提示后開始搶答,第一輪搶答出錯(cuò)失去第二輪答題資格;③每局比賽分兩輪,若第一輪搶答者給出正確答案,則此局比賽結(jié)束,若第一輪答題者答錯(cuò),主持人提示后另一隊(duì)直接答題。如果甲、乙兩隊(duì)搶到答題權(quán)機(jī)會(huì)均等,并且勢(shì)均力敵,第一個(gè)提示后答對(duì)概率均為;第二個(gè)提示后答對(duì)概率均為,為甲隊(duì)在一局比賽中的分.

(1)求甲在一局比賽中得分的分布列;

(2)若比賽共4局,求甲4局比賽中至少得6分的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(1)若時(shí),討論函數(shù)的單調(diào)性;

(2)若函數(shù)在區(qū)間上恰有2個(gè)零點(diǎn),求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】阿基米德是古希臘偉大的哲學(xué)家、數(shù)學(xué)家、物理學(xué)家,對(duì)幾何學(xué)、力學(xué)等學(xué)科作出過卓越貢獻(xiàn).為調(diào)查中學(xué)生對(duì)這一偉大科學(xué)家的了解程度,某調(diào)查小組隨機(jī)抽取了某市的100名高中生,請(qǐng)他們列舉阿基米德的成就,把能列舉阿基米德成就不少于3項(xiàng)的稱為“比較了解”,少于三項(xiàng)的稱為“不太了解”.他們的調(diào)查結(jié)果如下:

0項(xiàng)

1項(xiàng)

2項(xiàng)

3項(xiàng)

4項(xiàng)

5項(xiàng)

5項(xiàng)以上

理科生(人)

1

10

17

14

14

10

4

文科生(人)

0

8

10

6

3

2

1

(1)完成如下列聯(lián)表,并判斷是否有的把握認(rèn)為,了解阿基米德與選擇文理科有關(guān)?

比較了解

不太了解

合計(jì)

理科生

文科生

合計(jì)

(2)在抽取的100名高中生中,按照文理科采用分層抽樣的方法抽取10人的樣本.

(i)求抽取的文科生和理科生的人數(shù);

(ii)從10人的樣本中隨機(jī)抽取3人,用表示這3人中文科生的人數(shù),求的分布列和數(shù)學(xué)期望.

參考數(shù)據(jù):

0.100

0.050

0.010

0.001

2.706

3.841

6.635

10.828

,.

查看答案和解析>>

同步練習(xí)冊(cè)答案