【題目】設(shè)二次函數(shù)滿足下列條件:

恒成立;恒成立.

(1)求的值; (2)求的解析式;

(3)求最大的實(shí)數(shù),使得存在實(shí)數(shù),當(dāng)時(shí), 恒成立.

【答案】(1) (2) (3)

【解析】試題分析:(1)由當(dāng)x(0,5)時(shí),都有x≤f(x)≤2|x﹣1|+1恒成立可得f(1)=1;

(2)由f(﹣1+x)=f(﹣1﹣x)可得二次函數(shù)f(x)=ax2+bx+c(a,b,c∈R)的對稱軸為x=﹣1,于是b=2a,再由f(x)min=f(﹣1)=0,可得c=a,從而可求得函數(shù)f(x)的解析式;

(3)可由f(1+t)≤1,求得:﹣4≤t≤0,再利用平移的知識(shí)求得最大的實(shí)數(shù)m.

試題解析:

(1)當(dāng)x=1時(shí),

(2)由已知可得……①

……②

恒成立R恒成立

恒成立

恒成立

,

(3)恒成立,則使的圖像在的下方,且m最大,則1,m的兩個(gè)根

.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知定義在R上的函數(shù)f(x)是奇函數(shù),且滿足f(x)=f(x+3),f(-2)=-3.若數(shù)列{an}中,a1=-1,且前n項(xiàng)和Sn滿足=2×+1,則f(a5)+f(a6)=________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),給出下列結(jié)論:

(1)若對任意,且,都有,則為R上的減函數(shù);

(2)若為R上的偶函數(shù),且在內(nèi)是減函數(shù), (-2)=0,則>0解集為(-2,2);

(3)若為R上的奇函數(shù),則也是R上的奇函數(shù);

(4)t為常數(shù),若對任意的,都有關(guān)于對稱。

其中所有正確的結(jié)論序號(hào)為_________

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

已知直線的參數(shù)方程為為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.且曲線的左焦點(diǎn)在直線上.

(1)若直線與曲線交于兩點(diǎn),求的值;

(2)求曲線的內(nèi)接矩形的周長的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)= ;

(1)f(x)的定義域?yàn)?/span> (∞,+∞)求實(shí)數(shù)a的范圍;

(2)f(x)的值域?yàn)?/span> [0, +∞), 求實(shí)數(shù)a的范圍

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知點(diǎn)P(2,2),圓C:x2+y2-8y=0,過點(diǎn)P的動(dòng)直線l與圓C交于A,B兩點(diǎn),線段AB的中點(diǎn)為M,O為坐標(biāo)原點(diǎn).

(1)求M的軌跡方程;

(2)當(dāng)|OP|=|OM|時(shí),求l的方程及△POM的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】過曲線C1=1(a>0,b>0)的左焦點(diǎn)F1作曲線C2:x2+y2=a2的切線,設(shè)切點(diǎn)為M,直線F1M交曲線C3:y2=2px(p>0)于點(diǎn)N,其中曲線C1與C3有一個(gè)共同的焦點(diǎn),若|MF1|=|MN|,則曲線C1的離心率為( )

A. B. -1 C. +1 D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】化為推出一款6寸大屏手機(jī),現(xiàn)對500名該手機(jī)使用者(200名女性,300名男性)進(jìn)行調(diào)查,對手機(jī)進(jìn)行打分,打分的頻數(shù)分布表如下:

女性用戶:

分值區(qū)間

頻數(shù)

20

40

80

50

10

分值區(qū)間

頻數(shù)

45

75

90

60

30

男性用戶:

(1)如果評分不低于70分,就表示該用戶對手機(jī)認(rèn)可,否則就表示不認(rèn)可,完成下列列聯(lián)表,并回答是否有的把握認(rèn)為性別對手機(jī)的認(rèn)可有關(guān):

女性用戶

男性用戶

合計(jì)

認(rèn)可手機(jī)

不認(rèn)可手機(jī)

合計(jì)

附:

0.05

0.01

3.841

6635

(2)根據(jù)評分的不同,運(yùn)用分層抽樣從男性用戶中抽取20名用戶,在這20名用戶中,從評分不低于80分的用戶中任意抽取3名用戶,求3名用戶中評分小于90分的人數(shù)的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=ln xax(a是實(shí)數(shù)),g(x)=+1.

(1)當(dāng)a=2時(shí),求函數(shù)f(x)在定義域上的最值;

(2)若函數(shù)f(x)在[1,+∞)上是單調(diào)函數(shù),求a的取值范圍;

(3)是否存在正實(shí)數(shù)a滿足:對于任意x1∈[1,2],總存在x2∈[1,2],使得f(x1)=g(x2)成立? 若存在,求出a的取值范圍,若不存在,說明理由.

查看答案和解析>>

同步練習(xí)冊答案