【題目】如圖,四棱錐P﹣ABCD中,△PAD為正三角形,AB∥CD,AB=2CD,∠BAD=90°,PA⊥CD,E為棱PB的中點 (Ⅰ)求證:平面PAB⊥平面CDE;
(Ⅱ)若直線PC與平面PAD所成角為45°,求二面角A﹣DE﹣C的余弦值.

【答案】證明:(Ⅰ)取AP的中點F,連結(jié)EF,DF, ∵E是PB中點,∴EF AB,∴CD EF,
∴四邊形CDEF為平行四邊形,
∴DF∥CE,
又△PAD 為正三角形,
∴PA⊥DF,從而PA⊥CE,
又PA⊥CD,CD∩CE=C,
∴PA⊥平面CDE,
又PA平面PAB,∴平面PAB⊥平面CDE.
解:(Ⅱ)∵AB∥CD,PA⊥CD,
∴PA⊥AB,
又AB⊥AD,PA∩AD=A,
∴AB⊥平面PAD,∴CD⊥平面PAD,
∴∠CPD為PC與平面PAD所成角,即∠CPD=45°,從而CD=AD,
以A為原點,建立空間直角坐標(biāo)系A(chǔ)﹣xyz,如圖所示,

設(shè)AD=2,則A(0,0,0),B(4,0,0),P(0,1, ),D(0,2,0),E(2, , ),
=(2, ), =(0,2,0),
設(shè)平面ADE的法向量 =(x,y,z),
,取z=﹣4,得 =( ),
由(Ⅰ)知PA⊥平面CDE,∴ =(0,1, )是平面CDE的一個法向量,
∴cos< >= = =﹣ ,
∴二面角A﹣DE﹣C的余弦值為﹣
【解析】(Ⅰ)取AP的中點F,連結(jié)EF,DF,推導(dǎo)出四邊形CDEF為平行四邊形,從而DF∥CE,由此能證明平面PAB⊥平面CDE.(Ⅱ)以A為原點,建立空間直角坐標(biāo)系A(chǔ)﹣xyz,利用向量法能求出二面角A﹣DE﹣C的余弦值.
【考點精析】通過靈活運用平面與平面垂直的判定,掌握一個平面過另一個平面的垂線,則這兩個平面垂直即可以解答此題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)f(x)=x2-ax+b,問:(1)討論函數(shù)f(sinx)在( , )內(nèi)的單調(diào)性并判斷有無極值,有極值時求出極值;(2)記f0(x)= - x + ,求函數(shù)| f ( sin x ) - ( sin x )| 在[ . ]上的最大值D,(3)在(2)中,取a0=b0=0,求z= b - 滿足D ≤ 1時的最大值
(1)討論函數(shù)f(sinx)在( , )內(nèi)的單調(diào)性并判斷有無極值,有極值時求出極值;
(2)記f0(x)=,求函數(shù)上的最大值D,
(3)在(2)中,取a0=b0=0,求z=滿足D1時的最大值

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)在區(qū)間上的最大值為4,最小值為1

1)求實數(shù)、的值;

2)記,若上是單調(diào)函數(shù),求實數(shù)的取值范圍;

3)對于函數(shù),用1,2,,將區(qū)間任意劃分成個小區(qū)間,若存在常數(shù),使得和式對任意的劃分恒成立,則稱函數(shù)上的有界變差函數(shù).記,試判斷函數(shù)是否為在上的有界變差函數(shù)?若是,求的最小值;若不是,請說明理由.

(參考公式:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】正三棱柱ABC﹣A1B1C1底邊長為2,E,F(xiàn)分別為BB1 , AB的中點. (I)已知M為線段B1A1上的點,且B1A1=4B1M,求證:EM∥面A1FC;
(II)若二面角E﹣A1C﹣F所成角的余弦值為 ,求AA1的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若對于定義在上的函數(shù),其圖象是連續(xù)不斷的,且存在常數(shù)使得對任意實數(shù)都成立,則稱是一個“特征函數(shù)”.下列結(jié)論中正確的個數(shù)為( 。

是常數(shù)函數(shù)中唯一的“特征函數(shù)”;

不是“特征函數(shù)”;

③“特征函數(shù)”至少有一個零點;

是一個“特征函數(shù)”.

A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知不等式|x+3|﹣2x﹣1<0的解集為(x0 , +∞) (Ⅰ)求x0的值;
(Ⅱ)若函數(shù)f(x)=|x﹣m|+|x+ |﹣x0(m>0)有零點,求實數(shù)m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱柱ABCD﹣A1B1C1D1中,側(cè)面ADD1A1和側(cè)面CDD1C1都是矩形,BC∥AD,△ABD是邊長為2的正三角形,E,F(xiàn)分別為AD,A1D1的中點.
(Ⅰ)求證:DD1⊥平面ABCD;
(Ⅱ)求證:平面A1BE⊥平面ADD1A1;
(Ⅲ)若CF∥平面A1BE,求棱BC的長度.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在△ABC中,角A,B,C所對的邊分別為a,b,c,且bcosC=(3a﹣c)cosB.D為AC邊的中點,且BD=1,則△ABD面積的最大值為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】《數(shù)學(xué)九章》中對已知三角形三邊長求三角形的面積的求法填補了我國傳統(tǒng)數(shù)學(xué)的一個空白,與著名的海倫公式完全等價,由此可以看出我國古代已具有很高的數(shù)學(xué)水平,其求法是:“以小斜冪并大斜冪減中斜冪,余半之,自乘于上.以小斜冪乘大斜冪減上,余四約之,為實.一為從隔,開平方得積.”若把以上這段文字寫成公式,即S= .現(xiàn)有周長為2 + 的△ABC滿足sinA:sinB:sinC=( ﹣1): :( +1),試用以上給出的公式求得△ABC的面積為(
A.
B.
C.
D.

查看答案和解析>>

同步練習(xí)冊答案