【題目】已知點(diǎn),點(diǎn)分別為橢圓的左右頂點(diǎn),直線于點(diǎn),是等腰直角三角形,且

(1)求的方程;

(2)設(shè)過點(diǎn)的動直線相交于,兩點(diǎn),為坐標(biāo)原點(diǎn).當(dāng)為直角時(shí),求直線的斜率.

【答案】(1);(2).

【解析】

(1)由題意知,求得,再由,代入橢圓方程,解得,即可得到橢圓的方程;

(2)設(shè)l的方程為y=kx+2,與橢圓的方程聯(lián)立方程組,利用二次方程中根與系數(shù)的關(guān)系,求得,又由∠MON能為直角時(shí),利用列出方程,即可求解.

(1)由題意知,a=2,B(2,0),設(shè)Q(x0,y0),由,得,

代入橢圓方程,解得b2=1. ∴橢圓方程為.

(2)由題意可知,直線l的斜率存在,令l的方程為y=kx+2,M(x1,y1),N(x2,y2),

整理得:(1+4k2)x2+16kx+12=0,

由直線l與E有兩個(gè)不同的交點(diǎn),則△>0,

即(16k)2﹣4×12×(1+4k2)>0,解得.

由韋達(dá)定理可知:.

當(dāng)∠MON能為直角時(shí),,即,

則x1x2+y1y2=x1x2+(kx1+2)(kx2+2)=(1+k2)x1x2+2k(x1+x2)+4

,解得k2=4,即.

綜上可知,直線l的斜率時(shí),∠MON為直角.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】的方程為:,為圓上任意一點(diǎn),過軸的垂線,垂足為,點(diǎn)上,且.

(1)求點(diǎn)的軌跡的方程;

(2)過點(diǎn)的直線與曲線交于、兩點(diǎn),點(diǎn)的坐標(biāo)為,的面積為,求的最大值,及直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某種籠具由內(nèi),外兩層組成,無下底面,內(nèi)層和外層分別是一個(gè)圓錐和圓柱,其中圓柱與圓錐的底面周長相等,圓柱有上底面,制作時(shí)需要將圓錐的頂端剪去,剪去部分和接頭忽略不計(jì),已知圓柱的底面周長為,高為,圓錐的母線長為.

1)求這種籠具的體積(結(jié)果精確到0.1);

2)現(xiàn)要使用一種紗網(wǎng)材料制作50個(gè)籠具,該材料的造價(jià)為每平方米8元,共需多少元?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】用長度分別為的四根木條圍成一個(gè)平面四邊形,則該平面四邊形面積的最大值是____.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】現(xiàn)采用隨機(jī)模擬的方法估計(jì)某運(yùn)動員射擊4次,至少擊中3次的概率;先由計(jì)算器給出09之間取整數(shù)值的隨機(jī)數(shù),指定0、1、2、3表示沒有擊中目標(biāo), 4、5、6、7、8、9表示擊中目標(biāo),以4個(gè)隨機(jī)數(shù)為一組,代表射擊4次的結(jié)果,經(jīng)隨機(jī)模擬產(chǎn)生了20組隨機(jī)數(shù),根據(jù)以下數(shù)據(jù)估計(jì)該射擊運(yùn)動員射擊4次至少擊中3次的概率為(

7527 0293 7140 9857 0347 4373 8636 6947 1417 4698

0371 6233 2616 8045 6011 3661 9597 7424 7610 4281

A.0.4B.0.45C.0.5D.0.55

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面四邊形中(圖1),的中點(diǎn),,且,現(xiàn)將此平面四邊形沿折起,使得二面角為直二面角,得到一個(gè)多面體,為平面內(nèi)一點(diǎn),且為正方形(圖2),分別為的中點(diǎn).

1)求證:平面//平面;

2)在線段上是否存在一點(diǎn),使得平面與平面所成二面角的余弦值為?若存在,求出線段的長,若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】我國古代數(shù)學(xué)家祖暅提出原理:“冪勢既同,則積不容異”.其中“冪”是截面積,“勢”是幾何體的高.該原理的意思是:夾在兩個(gè)平行平面間的兩個(gè)幾何體,被任一平行于這兩個(gè)平行平面的平面所截,若所截的兩個(gè)截面的面積恒相等,則這兩個(gè)幾何體的體積相等.如圖,在空間直角坐標(biāo)系中的平面內(nèi),若函數(shù)的圖象與軸圍成一個(gè)封閉的區(qū)域,將區(qū)域沿軸的正方向平移8個(gè)單位長度,得到幾何體如圖一,現(xiàn)有一個(gè)與之等高的圓柱如圖二,其底面積與區(qū)域的面積相等,則此圓柱的體積為__________

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在直角梯形中,,點(diǎn)中點(diǎn),且,現(xiàn)將三角形沿折起,使點(diǎn)到達(dá)點(diǎn)的位置,且與平面所成的角為.

(1)求證:平面平面;

(2)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知橢圓分別為其左、右焦點(diǎn),過的直線與此橢圓相交于兩點(diǎn),且的周長為8,橢圓的離心率為

(Ⅰ)求橢圓的方程;

(Ⅱ)在平面直角坐標(biāo)系中,已知點(diǎn)與點(diǎn),過的動直線(不與軸平行)與橢圓相交于兩點(diǎn),點(diǎn)是點(diǎn)關(guān)于軸的對稱點(diǎn).求證:

i三點(diǎn)共線.

ii

查看答案和解析>>

同步練習(xí)冊答案