【題目】1642年,帕斯卡發(fā)明了一種可以進行十進制加減法的機械計算機年,萊布尼茨改進了帕斯卡的計算機,但萊布尼茲認為十進制的運算在計算機上實現(xiàn)起來過于復(fù)雜,隨即提出了“二進制”數(shù)的概念之后,人們對進位制的效率問題進行了深入的研究研究方法如下:對于正整數(shù),,我們準備張不同的卡片,其中寫有數(shù)字0,1,…,的卡片各有張如果用這些卡片表示位進制數(shù),通過不同的卡片組合,這些卡片可以表示個不同的整數(shù)例如,時,我們可以表示出共個不同的整數(shù)假設(shè)卡片的總數(shù)為一個定值,那么進制的效率最高則意味著張卡片所表示的不同整數(shù)的個數(shù)最大根據(jù)上述研究方法,幾進制的效率最高?
A. 二進制 B. 三進制 C. 十進制 D. 十六進制
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB⊥AC,若AD⊥BC,則AB2=BD·BC;類似地有命題:在三棱錐A-BCD中,AD⊥平面ABC,若A點在平面BCD內(nèi)的射影為M,則有S=S△BCM·S△BCD.上述命題是 ( )
A. 真命題
B. 增加條件“AB⊥AC”才是真命題
C. 增加條件“M為△BCD的垂心”才是真命題
D. 增加條件“三棱錐A-BCD是正三棱錐”才是真命題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知,p:,q:.
已知p是q成立的必要不充分條件,求實數(shù)m的取值范圍;
若是成立的充分不必要條件,求實數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某城市在進行創(chuàng)建文明城市的活動中,為了解居民對“創(chuàng)文”的滿意程度,組織居民給活動打分(分數(shù)為整數(shù).滿分為100分).從中隨機抽取一個容量為120的樣本.發(fā)現(xiàn)所有數(shù)據(jù)均在內(nèi).現(xiàn)將這些分數(shù)分成以下6組并畫出了樣本的頻率分布直方圖,但不小心污損了部分圖形,如圖所示.觀察圖形,回答下列問題:
(1)算出第三組的頻數(shù).并補全頻率分布直方圖;
(2)請根據(jù)頻率分布直方圖,估計樣本的眾數(shù)、中位數(shù)和平均數(shù).(每組數(shù)據(jù)以區(qū)間的中點值為代表)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知曲線(為參數(shù)),曲線,將的橫坐標(biāo)伸長為原來的2倍,縱坐標(biāo)縮短為原來的得到曲線.
(1)求曲線的普通方程,曲線的直角坐標(biāo)方程;
(2)若點為曲線上的任意一點,為曲線上的任意一點,求線段的最小值,并求此時的的坐標(biāo);
(3)過(2)中求出的點做一直線,交曲線于兩點,求面積的最大值(為直角坐標(biāo)系的坐標(biāo)原點),并求出此時直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列的前項和為,且,數(shù)列滿足,且.
(1)求數(shù)列,的通項公式;
(2)若,數(shù)列的前項和為,若不等式對一切恒成立,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)滿足如下條件:
①函數(shù)的最小值為,最大值為9;
②且;
③若函數(shù)在區(qū)間上是單調(diào)函數(shù),則的最大值為2.
試探究并解決如下問題:
(Ⅰ)求,并求的值;
(Ⅱ)求函數(shù)的圖象的對稱軸方程;
(Ⅲ)設(shè)是函數(shù)的零點,求的值的集合.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知,函數(shù).
(1)當(dāng)時,求函數(shù)在上的最值;
(2)若函數(shù)在上單調(diào)遞增,求的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com