設(shè)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824044116728423.png)
分別為橢圓
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824044116744215.png)
:
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240441167591085.png)
的左右頂點,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824044116759302.png)
為右焦點,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824044116775280.png)
為
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824044116744215.png)
在點
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824044116806309.png)
處的切線,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824044116822289.png)
為
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824044116744215.png)
上異于
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824044116728423.png)
的一點,直線
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824044116853377.png)
交
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824044116775280.png)
于
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824044116884315.png)
,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824044116900399.png)
為
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824044116915374.png)
中點,有如下結(jié)論:①
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824044116931471.png)
平分
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824044116931493.png)
;②
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824044116947456.png)
與橢圓
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824044116744215.png)
相切;③
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824044116947456.png)
平分
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824044116993494.png)
;④使得
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824044116993477.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824044117025474.png)
的點
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824044116822289.png)
不存在.其中正確結(jié)論的序號是_____________.
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240441170408088.png)
試題分析:設(shè)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824044117056642.png)
,則
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824044117071367.png)
的方程為:
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824044117087860.png)
,令
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824044117103368.png)
得
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240441171181277.png)
.
對①,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824044117134370.png)
的方程為:
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824044117149791.png)
即
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824044117165808.png)
,所以點M到直線PF的距離為
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240441171816421.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240441171965815.png)
即點M到PF到距離等于M到FB的距離,所以
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824044116931471.png)
平分
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824044116931493.png)
,成立;對②,直線PM的斜率為
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240441172432088.png)
,將
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240441167591085.png)
求導(dǎo)得
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240441172741184.png)
,所以過點P的切線的斜率為
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240441172741007.png)
(也可用
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824044117290398.png)
求得切線的斜率),所以橢圓
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824044116744215.png)
在點
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824044116822289.png)
處的切線即為PM,②成立;對③,延長
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824044117337407.png)
與直線
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824044116775280.png)
交于點
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824044117352339.png)
,由橢圓的光學(xué)性質(zhì)知,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824044117368971.png)
,于是
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824044116947456.png)
平分
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824044117399481.png)
,而不平分
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824044116993494.png)
,故③不成立;
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240441174306220.png)
若
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824044117446495.png)
,則
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824044116947456.png)
為
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824044117477593.png)
的斜邊中線,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824044117493576.png)
,這樣的
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824044116822289.png)
有4個,故④不成立.
練習(xí)冊系列答案
相關(guān)習(xí)題
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
如圖,已知橢圓
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240449084421175.png)
的左、右焦點分別為
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824044908457441.png)
,其上頂點為
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824044908473310.png)
已知
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824044908489578.png)
是邊長為
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824044908504291.png)
的正三角形.
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240449085203640.jpg)
(1)求橢圓
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824044908535313.png)
的方程;
(2)過點
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824044908551574.png)
任作一動直線
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824044908567280.png)
交橢圓
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824044908535313.png)
于
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824044908598550.png)
兩點,記
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824044908613795.png)
.若在線段
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824044908629513.png)
上取一點
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824044908645303.png)
,使得
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824044908676771.png)
,當(dāng)直線
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824044908567280.png)
運動時,點
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824044908645303.png)
在某一定直線上運動,求出該定直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
已知中心在坐標原點,焦點在
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824043813724266.png)
軸上的橢圓過點
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824043813740607.png)
,且它的離心率
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824043813756438.png)
.
(1)求橢圓的標準方程;
(2)與圓
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824043813802676.png)
相切的直線
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824043813818624.png)
交橢圓于
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824043813849553.png)
兩點,若橢圓上一點
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824043813865313.png)
滿足
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824043813880858.png)
,求實數(shù)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824043813912323.png)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
已知橢圓
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240425498991085.png)
的由頂點為A,右焦點為F,直線
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824042549915525.png)
與x軸交于點B且與直線
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824042549931597.png)
交于點C,點O為坐標原點,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824042549946885.png)
,過點F的直線
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824042549962280.png)
與橢圓交于不同的兩點M,N.
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/2014082404254999311106.png)
(1)求橢圓的方程;
(2)求
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824042550009635.png)
的面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
已知橢圓
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824050002457313.png)
:
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824050002504753.png)
(
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824050002520486.png)
)過點
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824050002535482.png)
,且橢圓
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824050002457313.png)
的離心率為
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824050002567334.png)
.
(1)求橢圓
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824050002457313.png)
的方程;
(2)若動點
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824050002598289.png)
在直線
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824050002613332.png)
上,過
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824050002598289.png)
作直線交橢圓
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824050002457313.png)
于
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824050002660556.png)
兩點,且
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824050002598289.png)
為線段
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824050002691513.png)
中點,再過
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824050002598289.png)
作直線
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824050002723616.png)
.求直線
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824050002738280.png)
是否恒過定點,如果是則求出該定點的坐標,不是請說明理由。
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:單選題
已知橢圓
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240439186051176.png)
與圓
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824043918620705.png)
,若在橢圓
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824043918636339.png)
上存在點P,使得由點P所作的圓
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824043918667372.png)
的兩條切線互相垂直,則橢圓
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824043918636339.png)
的離心率的取值范圍是( )
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:單選題
已知
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824043205439289.png)
是橢圓
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824043205470782.png)
,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824043205486571.png)
上除頂點外的一點,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824043205501317.png)
是橢圓的左焦點,若
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824043205501719.png)
則點
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824043205439289.png)
到該橢圓左焦點的距離為( )
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:單選題
若點O和點F分別為橢圓
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824044444583384.png)
的中心和左焦點,點P為橢圓上的任意一點,則
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824044444614313.png)
的最大值為( )
查看答案和解析>>