【題目】給出下列命題:
1)已知兩平面的法向量分別為 =(0,1,0), =(0,1,1),則兩平面所成的二面角為45°或135°;
2)若曲線 + =1表示雙曲線,則實數(shù)k的取值范圍是(﹣∞,﹣4)∪(1,+∞);
3)已知雙曲線方程為x2 =1,則過點P(1,1)可以作一條直線l與雙曲線交于A,B兩點,使點P是線段AB的中點.
其中正確命題的序號是

【答案】(1)(2)(3)
【解析】解:對于(1),兩法向量的夾角為cos< , >= = ,即有兩平面所成的二面角為45°或135°,故(1)正確;
對于(2),曲線 + =1表示雙曲線,則(4+k)(1﹣k)<0,解得k>1或k<﹣4,
故(2)正確;
對于(3),設(shè)過P(1,1)點的直線AB方程為y﹣1=k(x﹣1),
代入雙曲線方程得
(2﹣k2)x2﹣(2k﹣2k2)x﹣(k2﹣2k+3)=0.
設(shè)A(x1 , y1),B(x2 , y2),
則有x1+x2= ,
由已知 =xp=1,
=2.解得k=2.
又k=2時,△=(4﹣8)2+2(2﹣4)(4﹣4+3)=4>0,
從而直線AB方程為2x﹣y﹣1=0.
故(3)正確.
所以答案是:(1)(2)(3).
【考點精析】利用命題的真假判斷與應(yīng)用對題目進(jìn)行判斷即可得到答案,需要熟知兩個命題互為逆否命題,它們有相同的真假性;兩個命題為互逆命題或互否命題,它們的真假性沒有關(guān)系.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=x2+2x|x﹣a|,其中a∈R.
(1)當(dāng)a=﹣1時,在所給坐標(biāo)系中作出f(x)的圖象;
(2)對任意x∈[1,2],函數(shù)g(x)=﹣x+14的圖象恒在函數(shù)f(x)圖象的上方,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),

(I)求函數(shù)的單調(diào)區(qū)間;

,使不等式成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在直三棱柱ABC﹣A1B1C1中,∠ACB=90°,2AC=AA1=BC=2.若二面角B1﹣DC﹣C1的大小為60°,則AD的長為(

A.
B.
C.2
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列的通項公式分別為將集合

中的元素從小到大依次排列,構(gòu)成數(shù)列;將集合

中的元素從小到大依次排列,構(gòu)成數(shù)列.

(1)求數(shù)列的通項公式;

(2)求數(shù)列的通項公式;

(3)設(shè)數(shù)列的前項和為,求數(shù)列的通項公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知雙曲線C1 =1,(a>0,b>0)的焦距是實軸長的2倍,若拋物線C2:x2=2py,(p>0)的焦點到雙曲線C1的漸近線的距離為2,求拋物線C2的標(biāo)準(zhǔn)方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)集合 A={x|2<x<4},B={a<x<3a}.
(1)若A∩B≠,求實數(shù)a的范圍.
(2)若A∪B={x|2<x<6},求實數(shù)a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)f(x)= ,若關(guān)于x的方程f2(x)+bf(x)+c=0恰有5個不同的實數(shù)解x1 , x2 , x3 , x4 , x5 , h(x)=lg|x﹣4|,則h(x1+x2+x3+x4+x5)等于(
A.3
B.lg12
C.lg20
D.4lg2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列命題正確的是(

A. 的圖像是一條直線

B. 冪函數(shù)的圖像都經(jīng)過點

C. 若冪函數(shù)是奇函數(shù),則是增函數(shù)

D. 冪函數(shù)的圖像不可能出現(xiàn)在第四象限

查看答案和解析>>

同步練習(xí)冊答案