【題目】圖1是由矩形ADEB,Rt△ABC和菱形BFGC組成的一個平面圖形,其中AB=1,BE=BF=2,∠FBC=60°,將其沿AB,BC折起使得BE與BF重合,連結(jié)DG,如圖2.
(1)證明:圖2中的A,C,G,D四點(diǎn)共面,且平面ABC⊥平面BCGE;
(2)求圖2中的二面角BCGA的大小.
【答案】(1)見詳解;(2) .
【解析】
(1)因?yàn)檎奂埡驼澈喜桓淖兙匦?/span>,和菱形內(nèi)部的夾角,所以,依然成立,又因和粘在一起,所以得證.因?yàn)?/span>是平面垂線,所以易證.(2)在圖中找到對應(yīng)的平面角,再求此平面角即可.于是考慮關(guān)于的垂線,發(fā)現(xiàn)此垂足與的連線也垂直于.按照此思路即證.
(1)證:,,又因?yàn)?/span>和粘在一起.
,A,C,G,D四點(diǎn)共面.
又.
平面BCGE,平面ABC,平面ABC平面BCGE,得證.
(2)過B作延長線于H,連結(jié)AH,因?yàn)?/span>AB平面BCGE,所以
而又,故平面,所以.又因?yàn)?/span>所以是二面角的平面角,而在中,又因?yàn)?/span>故,所以.
而在中,,即二面角的度數(shù)為.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】一年之計在于春,一日之計在于晨,春天是播種的季節(jié),是希望的開端.某種植戶對一塊地的個坑進(jìn)行播種,每個坑播3粒種子,每粒種子發(fā)芽的概率均為,且每粒種子是否發(fā)芽相互獨(dú)立.對每一個坑而言,如果至少有兩粒種子發(fā)芽,則不需要進(jìn)行補(bǔ)播種,否則要補(bǔ)播種.
(1)當(dāng)取何值時,有3個坑要補(bǔ)播種的概率最大?最大概率為多少?
(2)當(dāng)時,用表示要補(bǔ)播種的坑的個數(shù),求的分布列與數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)解關(guān)于的不等式:;
(2)當(dāng)時,過點(diǎn)是否存在函數(shù)圖象的切線?若存在,有多少條?若不存在,說明理由;
(3)若是使恒成立的最小值,試比較與的大小().
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知動圓過定點(diǎn),且與直線相切,動圓圓心的軌跡為,過作斜率為的直線與交于兩點(diǎn),過分別作的切線,兩切線的交點(diǎn)為,直線與交于兩點(diǎn).
(1)證明:點(diǎn)始終在直線上且;
(2)求四邊形的面積的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的短軸長為,離心率,其右焦點(diǎn)為.
(1)求橢圓的方程;
(2)過作夾角為的兩條直線分別交橢圓于和,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知平面向量,滿足:||=2,||=1.
(1)若(2)()=1,求的值;
(2)設(shè)向量,的夾角為θ.若存在t∈R,使得,求cosθ的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com