【題目】已知命題:方程有兩個不相等的實(shí)數(shù)根;命題:不等式的解集為.若為真,為假,求實(shí)數(shù)的取值范圍.

【答案】

【解析】

根據(jù)“為真,為假”判斷出“為真,為假”,利用判別式列不等式分別求得為假、為真時的取值范圍,再取兩者的交集求得實(shí)數(shù)的取值范圍.

因?yàn)?/span>為真,為假,所以為真,為假

為假,,即:,∴ ,

為真,,即:,∴,

所以取交集為 .

【點(diǎn)睛】

本小題主要考查含有簡單邏輯聯(lián)結(jié)詞命題的真假性,考查一元二次方程根與判別式的關(guān)系,考查一元二次不等式解集為與判別式的關(guān)系,屬于中檔題.

型】解答
結(jié)束】
18

【題目】已知雙曲線的中心在原點(diǎn),焦點(diǎn)為且離心率.

(1)求雙曲線的方程;

(2)求以點(diǎn)為中點(diǎn)的弦所在的直線方程.

【答案】(1);(2).

【解析】

1)根據(jù)焦點(diǎn)坐標(biāo)求得,根據(jù)離心率及求得的值,進(jìn)而求得雙曲線的標(biāo)準(zhǔn)方程.2)設(shè)出兩點(diǎn)的坐標(biāo),利用點(diǎn)差法求得弦所在直線的斜率,再由點(diǎn)斜式求得弦所在的直線方程.

(1) 由題可得,,∴,,

所以雙曲線方程 .

(2)設(shè)弦的兩端點(diǎn)分別為,

則由點(diǎn)差法有: , 上下式相減有:

又因?yàn)?/span>為中點(diǎn),所以,

,所以由直線的點(diǎn)斜式可得,

即直線的方程為.

經(jīng)檢驗(yàn)滿足題意.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),當(dāng)時,的極大值為7;當(dāng)時,有極小值.

(1)的值;

(2)求函數(shù)上的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在如圖所示的幾何體中,面CDEF為正方形,面ABCD為等腰梯形,ABCD,AC,AB=2BC=2,ACFB.

(1)求證:AC⊥平面FBC;

(2)求四面體FBCD的體積;

(3)線段AC上是否存在點(diǎn)M,使得EA∥平面FDM?證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐PABCD中,AB∥CD ,且∠BAP=∠CDP =90°.

(1).證明:平面PAB⊥平面PAD;

(2).若PA=PD=AB=DC, ∠APD =90°,且四棱錐PABCD的體積為,求該四棱錐的側(cè)面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】“劍橋?qū)W派”創(chuàng)始人之一數(shù)學(xué)家哈代說過:“數(shù)學(xué)家的造型,同畫家和詩人一樣,也應(yīng)當(dāng)是美麗的”;古希臘數(shù)學(xué)家畢達(dá)哥拉斯創(chuàng)造的“黃金分割”給我們的生活處處帶來美;我國古代數(shù)學(xué)家趙爽創(chuàng)造了優(yōu)美“弦圖”.“弦圖”是由四個全等的直角三角形與一個小正方形拼成的一個大正方形,如果小正方形的面積為1,大正方形的面積為25,直角三角形中較小的銳角為,則等于(

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(本小題滿分12分)

已知拋物線C的方程Cy2="2" p xp0)過點(diǎn)A1,-2.

I)求拋物線C的方程,并求其準(zhǔn)線方程;

II)是否存在平行于OAO為坐標(biāo)原點(diǎn))的直線l,使得直線l與拋物線C有公共點(diǎn),且直線OAl的距離等于?若存在,求出直線l的方程;若不存在,說明理由。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

以平面直角坐標(biāo)系的原點(diǎn)為極點(diǎn), 軸的正半軸為極軸建立極坐標(biāo)系,已知點(diǎn)的直角坐標(biāo)為,若直線的極坐標(biāo)方程為,曲線的參數(shù)方程是,(為參數(shù)).

(1)求直線的直角坐標(biāo)方程和曲線的普通方程;

(2)設(shè)直線與曲線交于兩點(diǎn),求.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】[選修4-4:坐標(biāo)系與參數(shù)方程]

在平面直角坐標(biāo)系中,直線的參數(shù)方程為為參數(shù)),在以直角坐標(biāo)系的原點(diǎn)為極點(diǎn), 軸的正半軸為極軸的極坐標(biāo)系中,曲線的極坐標(biāo)方程為.

(Ⅰ)求曲線的直角坐標(biāo)方程和直線的普通方程;

(Ⅱ)若直線與曲線相交于 兩點(diǎn),求的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列說法正確的是()

A. ,,則”是真命題

B. 在同一坐標(biāo)系中,函數(shù)的圖象關(guān)于軸對稱.

C. 命題“,使得”的否定是“,都有

D. ,“”是“”的充分不必要條件

查看答案和解析>>

同步練習(xí)冊答案