【題目】已知正實(shí)數(shù),函數(shù) .
(1)討論函數(shù)的單調(diào)性;
(2)若在內(nèi)有解,求的取值范圍.
【答案】(1)見解析;(2)
【解析】
(1)令,解得,討論與的大小關(guān)系確定的符號(hào)變化求單調(diào)性即可;(2)在內(nèi)有解,則,由(1)的討論確定的正負(fù)變化確定其最小值即可求解
令,解得
當(dāng)時(shí),即時(shí)在上,函數(shù)單調(diào)遞增,在上,函數(shù)單調(diào)遞減;
當(dāng)時(shí),即時(shí),函數(shù)在定義域上單調(diào)遞增;
當(dāng)時(shí),即時(shí),在上,函數(shù)單調(diào)遞增,在上,函數(shù)單調(diào)遞減.
綜上所述,當(dāng)時(shí),在上,函數(shù)單調(diào)遞增;在上,函數(shù)單調(diào)遞減;當(dāng)時(shí),函數(shù)在定義域上單調(diào)遞增;當(dāng)時(shí),在上,函數(shù)單調(diào)遞增,在上,函數(shù)單調(diào)遞減.
(2)若在內(nèi)有解,則
由(1)可知,當(dāng),即時(shí),,函數(shù)在上單調(diào)遞增,,解得;
當(dāng),即1<a<2時(shí),在時(shí),,函數(shù)在上單調(diào)遞減,在時(shí),,函數(shù)在上單調(diào)遞增,
令 ,函數(shù)在上單調(diào)遞增.
恒成立,
當(dāng),即時(shí),,函數(shù)在上單調(diào)遞減,
不成立,綜上所述:.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】隨著社會(huì)的進(jìn)步,經(jīng)濟(jì)的發(fā)展,道路上的汽車越來越多,隨之而來的交通事故也增多.據(jù)有關(guān)部門調(diào)查,發(fā)生車禍的駕駛員中尤其是21 歲以下年輕人所占比例居高,因此交通管理有關(guān)部門,對2018 年參加駕照考試的21 歲以下學(xué)員隨機(jī)抽取10 名學(xué)員,對他們參加的科目三(道路駕駛)和科目四(安全文明駕駛相關(guān)知識(shí))進(jìn)行兩輪現(xiàn)場測試,并把兩輪測試成績的平均分作為該名學(xué)員的抽測成績.記錄的數(shù)據(jù)如下:
(1)從2018年參加駕照考試的21歲以下學(xué)員中隨機(jī)選取一名學(xué)員,試估計(jì)這名學(xué)員抽測成績大于或等于90分的概率;
(2)根據(jù)規(guī)定,科目三和科目四測試成績均達(dá)到90分以上(含90)才算測試合格.
(i)從抽測的1號(hào)至5號(hào)學(xué)員中任取兩名學(xué)員,記為學(xué)員測試合格的人數(shù),求的分布列和數(shù)學(xué)期望 ;
(ii) 記抽取的10名學(xué)員科目三和科目四測試成績的方差分別為,,試比較與的大小.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】
某學(xué)校高一數(shù)學(xué)興趣小組對學(xué)生每周平均體育鍛煉小時(shí)數(shù)與體育成績優(yōu)秀(體育成績滿分100分,不低于85分稱優(yōu)秀)人數(shù)之間的關(guān)系進(jìn)行分析研究,他們從本校初二,初三,高一,高二,高三年級(jí)各隨機(jī)抽取了40名學(xué)生,記錄并整理了這些學(xué)生周平均體育鍛煉小時(shí)數(shù)與體育成績優(yōu)秀人數(shù),得到如下數(shù)據(jù)表:
初二 | 初三 | 高一 | 高二 | 高三 | |
周平均體育鍛煉小時(shí)數(shù)工(單位:小時(shí)) | 14 | 11 | 13 | 12 | 9 |
體育成績優(yōu)秀人數(shù)y(單位:人) | 35 | 26 | 32 | 26 | 19 |
該興趣小組確定的研究方案是:先從這5組數(shù)據(jù)中選取3組數(shù)據(jù)求線性回歸方程,再用剩下的2組數(shù)據(jù)進(jìn)行檢驗(yàn).
(1)若選取的是初三,高一,高二的3組數(shù)據(jù),請根據(jù)這3組數(shù)據(jù),求出y關(guān)于x的線性回歸方程;
(2)若由線性回歸方程得到的估計(jì)數(shù)據(jù)與所選取的檢驗(yàn)數(shù)據(jù)的誤差均不超過1,則認(rèn)為得到的線性回歸方程是可靠的,試問(1)中所得到的線性回歸方程是否可靠?
參考數(shù)據(jù):,.
參考公式:,.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列是首項(xiàng)為1,公差為的等差數(shù)列,數(shù)列是首項(xiàng)為1,公比為的等比數(shù)列.
(1)若,求數(shù)列的前項(xiàng)和;
(2)若存在正整數(shù),使得,試比較與的大小,并說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知雙曲線C:,則( )
A.雙曲線C的離心率等于半焦距的長
B.雙曲線與雙曲線C有相同的漸近線
C.雙曲線C的一條準(zhǔn)線被圓x2+y2=1截得的弦長為
D.直線y=kx+b(k,bR)與雙曲線C的公共點(diǎn)個(gè)數(shù)只可能為0,1,2
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,已知橢圓E:(a>b>0)的離心率為,且橢圓E的短軸的端點(diǎn)到焦點(diǎn)的距離等于2.
(1)求橢圓E的標(biāo)準(zhǔn)方程;
(2)己知A,B分別為橢圓E的左、右頂點(diǎn),過x軸上一點(diǎn)P(異于原點(diǎn))作斜率為k(k≠0)的直線l與橢圓E相交于C,D兩點(diǎn),且直線AC與BD相交于點(diǎn)Q.①若k=1,求線段CD中點(diǎn)橫坐標(biāo)的取值范圍;②判斷是否為定值,并說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)偶函數(shù)和奇函數(shù)的圖象如圖所示,集合A 與集合B 的元素個(gè)數(shù)分別為a,b,若,則a+b的值不可能是( )
A. 12B. 13C. 14D. 15
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】十九大以來,某貧困地區(qū)扶貧辦積極貫徹落實(shí)國家精準(zhǔn)扶貧的政策要求,帶領(lǐng)廣大農(nóng)村地區(qū)人民群眾脫貧奔小康。經(jīng)過不懈的奮力拼搏,新農(nóng)村建設(shè)取得巨大進(jìn)步,農(nóng)民年收入也逐年增加。為了更好的制定2019年關(guān)于加快提升農(nóng)民年收人力爭早日脫貧的工作計(jì)劃,該地扶貧辦統(tǒng)計(jì)了2018年50位農(nóng)民的年收人并制成如下頻率分布直方圖:
(1)根據(jù)頻率分布直方圖,估計(jì)50位農(nóng)民的年平均收入(單位:千元)(同一組數(shù)據(jù)用該組數(shù)據(jù)區(qū)間的中點(diǎn)值表示);
(2)由頻率分布直方圖,可以認(rèn)為該貧困地區(qū)農(nóng)民年收入服從正態(tài)分布,其中近似為年平均收入,近似為樣本方差,經(jīng)計(jì)算得.利用該正態(tài)分布,求:
(i)在2019年脫貧攻堅(jiān)工作中,若使該地區(qū)約有占總農(nóng)民人數(shù)的的農(nóng)民的年收入高于扶貧辦制定的最低年收入標(biāo)準(zhǔn),則最低年收入大約為多少千元?
(ii)為了調(diào)研“精準(zhǔn)扶貧,不落一人”的政策要求落實(shí)情況, 扶貧辦隨機(jī)走訪了1000位農(nóng)民。若每個(gè)農(nóng)民的年收人相互獨(dú)立,問:這1000位農(nóng)民中的年收入不少于12.14千元的人數(shù)最有可能是多少?
附:參考數(shù)據(jù)與公式,若~,則①;②;③.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com