【題目】某機(jī)構(gòu)用“10分制”調(diào)查了各階層人士對某次國際馬拉松賽事的滿意度,現(xiàn)從調(diào)查人群中隨機(jī)抽取16名,如圖莖葉圖記錄了他們的滿意度分?jǐn)?shù)(以小數(shù)點(diǎn)前的一位數(shù)字為莖,小數(shù)點(diǎn)后的一位數(shù)字為葉):
(1)指出這組數(shù)據(jù)的眾數(shù)和中位數(shù);
(2)若滿意度不低于9.5分,則稱該被調(diào)查者的滿意度為“極滿意”,求從這16人中隨機(jī)選取3人,至少有2人滿意度是“極滿意”的概率;
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖為某班35名學(xué)生的投籃成績(每人投一次)的條形統(tǒng)計(jì)圖,其中上面部分?jǐn)?shù)據(jù)破損導(dǎo)致數(shù)據(jù)不完全。已知該班學(xué)生投籃成績的中位數(shù)是5,則根據(jù)統(tǒng)計(jì)圖,則下列說法錯(cuò)誤的是( )
A. 3球以下(含3球)的人數(shù)為10
B. 4球以下(含4球)的人數(shù)為17
C. 5球以下(含5球)的人數(shù)無法確定
D. 5球的人數(shù)和6球的人數(shù)一樣多
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在甲、乙兩個(gè)盒子中分別裝有標(biāo)號為1、2、3、4的四個(gè)球,現(xiàn)從甲、乙兩個(gè)盒子中各取出1個(gè)球,每個(gè)球被取出的可能性相等.
(Ⅰ)求取出的兩個(gè)球上標(biāo)號為相同數(shù)字的概率;
(Ⅱ)求取出的兩個(gè)球上標(biāo)號之積能被3整除的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=+.
(1)當(dāng)m=0時(shí),求不等式f(x)≤9的解集;
(2)當(dāng)m=2時(shí),若x∈(1,4),f(x) 2xa<0,求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在五面體中,側(cè)面是正方形,是等腰直角三角形,點(diǎn)是正方形對角線的交點(diǎn),且.
(1)證明:平面;
(2)若側(cè)面與底面垂直,求五面體的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某“雙一流”大學(xué)專業(yè)獎(jiǎng)學(xué)金是以所學(xué)專業(yè)各科考試成績作為評選依據(jù),分為專業(yè)一等獎(jiǎng)學(xué)金(獎(jiǎng)金額元)、專業(yè)二等獎(jiǎng)學(xué)金(獎(jiǎng)金額元)及專業(yè)三等獎(jiǎng)學(xué)金(獎(jiǎng)金額元),且專業(yè)獎(jiǎng)學(xué)金每個(gè)學(xué)生一年最多只能獲得一次.圖(1)是統(tǒng)計(jì)了該校年名學(xué)生周課外平均學(xué)習(xí)時(shí)間頻率分布直方圖,圖(2)是這名學(xué)生在年周課外平均學(xué)習(xí)時(shí)間段獲得專業(yè)獎(jiǎng)學(xué)金的頻率柱狀圖.
(Ⅰ)求這名學(xué)生中獲得專業(yè)三等獎(jiǎng)學(xué)金的人數(shù);
(Ⅱ)若周課外平均學(xué)習(xí)時(shí)間超過小時(shí)稱為“努力型”學(xué)生,否則稱為“非努力型”學(xué)生,列聯(lián)表并判斷是否有的把握認(rèn)為該校學(xué)生獲得專業(yè)一、二等獎(jiǎng)學(xué)金與是否是“努力型”學(xué)生有關(guān)?
(Ⅲ)若以頻率作為概率,從該校任選一名學(xué)生,記該學(xué)生年獲得的專業(yè)獎(jiǎng)學(xué)金額為隨機(jī)變量,求隨機(jī)變量的分布列和期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知,則方程恰有2個(gè)不同的實(shí)根,實(shí)數(shù)取值范圍__________________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線:()上橫坐標(biāo)為4的點(diǎn)到焦點(diǎn)的距離為5.
(1)求拋物線的方程;
(2)設(shè)直線與拋物線交于不同兩點(diǎn),若滿足,證明直線恒過定點(diǎn),并求出定點(diǎn)的坐標(biāo).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com