【題目】已知函數f(x)=2cos( ﹣x)sinx+(sinx+cosx)2 .
(1)求函數f(x)的單調遞增區(qū)間;
(2)把y=f(x)的圖象上所有點的橫坐標伸長到原來的2倍(縱坐標不變),再把得到的圖象向左平移 個單位,得到函數y=g(x)的圖象,求 的值.
【答案】
(1)解:函數f(x)=2cos( ﹣x)sinx+(sinx+cosx)2.
化簡得:f(x)=2sinxsinx+1+2sinxcosx
=2sin2x+sin2x+1
=2( cos2x)+sin2x+1
= sin(2x﹣ )+2
由正弦函數的圖象及性質.
可得:2x﹣ ∈[ , ]是單調增區(qū)間,即 ≤2x﹣ ≤ ,k∈Z.
解得: ≤x≤ ,
所以:函數f(x)的單調遞增區(qū)間是[ , ],(k∈Z)
(2)解:由(1)可得f(x)= sin(2x﹣ )+2,把y=f(x)的圖象上所有點的橫坐標伸長到原來的2倍(縱坐標不變),得到y(tǒng)= sin(x﹣ )+2的圖象,再把得到的圖象向左平移 個單位,得到g(x)= sin(x+ )+2的圖象.
∴ = sin( )+2= sin +2=3
所以 的值為:3
【解析】(1)將函數化為y=Asin(ωx+φ)的形式,將內層函數看作整體,放到正弦函數的增區(qū)間上,解不等式得函數的單調遞增區(qū)間;(2)根據三角函數的圖象平移變換規(guī)律,求出g(x)的解析式,在求 的值.
【考點精析】解答此題的關鍵在于理解函數y=Asin(ωx+φ)的圖象變換的相關知識,掌握圖象上所有點向左(右)平移個單位長度,得到函數的圖象;再將函數的圖象上所有點的橫坐標伸長(縮短)到原來的倍(縱坐標不變),得到函數的圖象;再將函數的圖象上所有點的縱坐標伸長(縮短)到原來的倍(橫坐標不變),得到函數的圖象.
科目:高中數學 來源: 題型:
【題目】已知函數y=f(2x+1)定義域是[﹣1,0],則y=f(x+1)的定義域是( 。
A.[﹣1,1]
B.[0,2]
C.[﹣2,0]
D.[﹣2,2]
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】若函數exf(x)(e≈2.71828…是自然對數的底數)在f(x)的定義域上單調遞增,則稱函數f(x)具有M性質.下列函數中所有具有M性質的函數的序號為 .
①f(x)=2﹣x②f(x)=3﹣x③f(x)=x3④f(x)=x2+2.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設等差數列{an}的前n項和為Sn , ,若 ,且S11=143,數列{bn}的前n項和為Tn , 且滿足 .
(1)求數列{an}的通項公式及數列 的前n項和Mn
(2)是否存在非零實數λ,使得數列{bn}為等比數列?并說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】有甲乙兩個班級進行數學考試,按照大于等于85分為優(yōu)秀,85分以下為非優(yōu)秀統(tǒng)計成績后,得到如下的列聯(lián)表.
優(yōu)秀 | 非優(yōu)秀 | 總計 | |
甲班 | 10 | ||
乙班 | 30 | ||
合計 | 105 |
已知在全部105人中隨機抽取一人為優(yōu)秀的概率為.
(1)請完成上面的列聯(lián)表;
(2)根據列聯(lián)表的數據,若按97.5%的可靠性要求,能否認為“成績與班級有關系”;
(3)若按下面的方法從甲班優(yōu)秀的學生抽取一人:把甲班優(yōu)秀的10名學生從2到11進行編號,先后兩次拋擲一枚均勻的骰子,出現(xiàn)的點數之和為被抽取人的序號.試求抽到10或11號的概率.
參考公式和數據:
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,已知直三棱柱ABC﹣A1B1C1的底面是邊長為4的正三角形,B,E,F(xiàn)分別是AA1 , CC1的中點,且BE⊥B1F.
(1)求證:B1F⊥EC1;
(2)求二面角C1﹣BE﹣C的余弦值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某單位員工人參加“學雷鋒”志愿活動,按年齡分組:第組,第組,第組,第組,第組,得到的頻率分布直方圖如圖所示.
(1)下表是年齡的頻率分布表,求正整數的值;
區(qū)間 | |||||
人數 |
(2)現(xiàn)在要從年齡較小的第組中用分層抽樣的方法抽取人,年齡在第組抽取的員工的人數分別是多少?
(3)在(2)的前提下,從這人中隨機抽取人參加社區(qū)宣傳交流活動,求至少有人年齡在第組的概率.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com