【題目】已知函數(shù).
(1)若曲線在點(diǎn)處的切線方程為,求a,b的值;
(2)如果是函數(shù)的兩個(gè)零點(diǎn), 為函數(shù)的導(dǎo)數(shù),證明:
【答案】(1);(2)證明見(jiàn)解析.
【解析】試題分析:
(1)由曲線在點(diǎn)處的切線方程,可求出切線斜率,即為函數(shù)在x=1處的導(dǎo)數(shù),由此可求出,再求出,即得點(diǎn),再將點(diǎn)切線方程為,即可求出.
(2)先求出,再由是函數(shù)的兩個(gè)零點(diǎn)這一條件,將轉(zhuǎn)為的數(shù)學(xué)表達(dá)式,再通過(guò)換元,得到了與一個(gè)變量的關(guān)系,最終將問(wèn)題轉(zhuǎn)化為求函數(shù)的單調(diào)性與最值問(wèn)題。
試題解析:
(1)由切線方程為,可知斜率, 而.所以,得,由此.
而,所以, ,得.
(2)因?yàn)椋?/span> ,所以
是函數(shù)的兩個(gè)零點(diǎn) ,
,
故要證,
只需證
,令則設(shè) 下面證
恒成立
在單調(diào)遞減, 即
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】數(shù)列{an}的前n項(xiàng)和記為Sn , a1=t,an+1=2Sn+1(n∈N*).
(1)當(dāng)t為何值時(shí),數(shù)列{an}為等比數(shù)列?
(2)在(1)的條件下,若等差數(shù)列{bn}的前n項(xiàng)和Tn有最大值,且T3=15,又a1+b1 , a2+b2 , a3+b3成等比數(shù)列,求Tn .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知拋物線C:y2=4x,過(guò)焦點(diǎn)F斜率大于零的直線l交拋物線于A、B兩點(diǎn),且與其準(zhǔn)線交于點(diǎn)D.
(Ⅰ)若線段AB的長(zhǎng)為5,求直線l的方程;
(Ⅱ)在C上是否存在點(diǎn)M,使得對(duì)任意直線l,直線MA,MD,MB的斜率始終成等差數(shù)列,若存在求點(diǎn)M的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)數(shù)列的前項(xiàng)和為,且.
(1)求證:數(shù)列為等比數(shù)列;
(2)設(shè)數(shù)列的前項(xiàng)和為,求證: 為定值;
(3)判斷數(shù)列中是否存在三項(xiàng)成等差數(shù)列,并證明你的結(jié)論.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】給出下列命題中
① 非零向量滿足,則的夾角為;
②
>0是的夾角為銳角的充要條件;
③若則必定是直角三角形;
④△ABC的外接圓的圓心為O,半徑為1,若,且,則向量在向量方向上的投影為.
以上命題正確的是 __________ (注:把你認(rèn)為正確的命題的序號(hào)都填上)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知數(shù)列{an}的首項(xiàng)a1= ,an+1= ,n=1,2,…
(1)求證:{ ﹣1}是等比數(shù)列,并求出{an}的通項(xiàng)公式;
(2)證明:對(duì)任意的x>0,an≥ ﹣ ( ﹣x),n=1,2,…
(3)證明:n﹣ ≥a1+a2+…+an> .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示的幾何體是由棱臺(tái) 和棱錐拼接而成的組合體,其底面四邊形是邊長(zhǎng)為 的菱形,且 , 平面 , .
(1)求證:平面 平面 ;
(2)求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在正方體ABCD﹣A1B1C1D1中,E是棱CC1的中點(diǎn).
(1)證明:AC1∥平面BDE;
(2)證明:AC1⊥BD.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
極坐標(biāo)系中, 為極點(diǎn),半徑為2的圓的圓心坐標(biāo)為.
(1)求圓的極坐標(biāo)方程;
(2)設(shè)直角坐標(biāo)系的原點(diǎn)與極點(diǎn)重合, 軸非負(fù)關(guān)軸與極軸重合,直線的參數(shù)方程為(為參數(shù)),由直線上的點(diǎn)向圓引切線,求切線長(zhǎng)的最小值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com