【題目】等比數(shù)列{an}的公比為q(q≠0),其前項(xiàng)和為Sn , 若S3 , S9 , S6成等差數(shù)列,則q3=

【答案】﹣
【解析】解:由題意可得公比q≠1,∵S3 , S9 , S6成等差數(shù)列,∴2S9=S3+S6 ,
∴2 = + ,∴2q9﹣q6﹣q3=0,
∴2q6﹣q3﹣1=0,解得 q3 = ,∴q3 =﹣ ,
所以答案是﹣
【考點(diǎn)精析】認(rèn)真審題,首先需要了解等差數(shù)列的性質(zhì)(在等差數(shù)列{an}中,從第2項(xiàng)起,每一項(xiàng)是它相鄰二項(xiàng)的等差中項(xiàng);相隔等距離的項(xiàng)組成的數(shù)列是等差數(shù)列),還要掌握等比數(shù)列的基本性質(zhì)({an}為等比數(shù)列,則下標(biāo)成等差數(shù)列的對(duì)應(yīng)項(xiàng)成等比數(shù)列;{an}既是等差數(shù)列又是等比數(shù)列== {an}是各項(xiàng)不為零的常數(shù)列)的相關(guān)知識(shí)才是答題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某廠商調(diào)查甲、乙兩種不同型號(hào)電視機(jī)在10個(gè)賣(mài)場(chǎng)的銷(xiāo)售量(單位:臺(tái)),并根據(jù)這10個(gè)賣(mài)場(chǎng)的銷(xiāo)售情況,得到如圖所示的莖葉圖. 為了鼓勵(lì)賣(mài)場(chǎng),在同型號(hào)電視機(jī)的銷(xiāo)售中,該廠商將銷(xiāo)售量高于數(shù)據(jù)平均數(shù)的賣(mài)場(chǎng)命名為該型號(hào)電視機(jī)的星級(jí)賣(mài)場(chǎng)”.

(1)求在這10個(gè)賣(mài)場(chǎng)中,甲型號(hào)電視機(jī)的“星級(jí)賣(mài)場(chǎng)”的個(gè)數(shù);

(2)若在這10個(gè)賣(mài)場(chǎng)中,乙型號(hào)電視機(jī)銷(xiāo)售量的平均數(shù)為26.7,求a>b的概率;

(3)若a=1,記乙型號(hào)電視機(jī)銷(xiāo)售量的方差為,根據(jù)莖葉圖推斷b為何值時(shí),達(dá)到最值.

(只需寫(xiě)出結(jié)論)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知數(shù)列{an}的前n項(xiàng)和為Sn , 且Sn=n﹣5an﹣85,n∈N+
(1)求an
(2)求數(shù)列{Sn}的通項(xiàng)公式,并求出n為何值時(shí),Sn取得最小值?并說(shuō)明理由.(參考數(shù)據(jù):lg 2≈0.3,lg 3≈0.48).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知滿足.

(1)求取到最值時(shí)的最優(yōu)解;

2)求的取值范圍;

3)若恒成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某顏料公司生產(chǎn)、兩種產(chǎn)品,其中生產(chǎn)每噸產(chǎn)品,需要甲染料噸,乙染料噸,丙染料噸,生產(chǎn)每噸產(chǎn)品,需要甲染料噸,乙染料噸,丙染料噸,且該公司一天之內(nèi)甲、乙、丙三種染料的用量分別不超過(guò)噸、噸、噸,如果產(chǎn)品的利潤(rùn)為元/噸, 產(chǎn)品的利潤(rùn)為元/噸,則該顏料公司一天內(nèi)可獲得的最大利潤(rùn)為( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某顏料公司生產(chǎn)兩種產(chǎn)品,其中生產(chǎn)每噸產(chǎn)品,需要甲染料噸,乙染料噸,丙染料噸,生產(chǎn)每噸產(chǎn)品,需要甲染料噸,乙染料噸,丙染料噸,且該公司一天之內(nèi)甲、乙、丙三種染料的用量分別不超過(guò)噸、噸、噸,如果產(chǎn)品的利潤(rùn)為元/噸, 產(chǎn)品的利潤(rùn)為元/噸,則該顏料公司一天內(nèi)可獲得的最大利潤(rùn)為( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,三棱柱A1B1C1 - ABC中,側(cè)棱AA1丄底面A1B1C1,底面三角形A1B1C1是正三角形,E是BC中點(diǎn),則下列敘述正確的是

A. CC1與B1E是異面直線 B. AC丄平面ABB1A1

C. A1C1∥平面AB1E D. AE與B1C1為異面直線,且AE丄B1C1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】【2016高考山東理數(shù)】平面直角坐標(biāo)系中,橢圓C: 的離心率是,拋物線E:的焦點(diǎn)FC的一個(gè)頂點(diǎn).

I)求橢圓C的方程;

II)設(shè)P是E上的動(dòng)點(diǎn),且位于第一象限,E在點(diǎn)P處的切線與C交與不同的兩點(diǎn)A,B,線段AB的中點(diǎn)為D,直線OD與過(guò)P且垂直于x軸的直線交于點(diǎn)M.

i)求證:點(diǎn)M在定直線上;

ii)直線與y軸交于點(diǎn)G,記的面積為,的面積為,求 的最大值及取得最大值時(shí)點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖半圓柱的底面半徑和高都是1,面是它的軸截面(過(guò)上下底面圓心連線的平面),分別是上下底面半圓周上一點(diǎn).

(1)證明:三棱錐體積,并指出滿足什么條件時(shí)有

(2)求二面角平面角的取值范圍,并說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案