【題目】若點為點在平面上的正投影,則記.如圖,在棱長為的正方體中,記平面為,平面為,點是棱上一動點(與、不重合),.給出下列三個結(jié)論:
①線段長度的取值范圍是;
②存在點使得平面;
③存在點使得.
其中,所有正確結(jié)論的序號是( )
A.①②③B.②③C.①③D.①②
【答案】D
【解析】
以點為坐標原點,、、所在直線分別為軸、軸、軸建立空間直角坐標系,設(shè)點的坐標為,求出點、的坐標,然后利用向量法來判斷出命題①②③的正誤.
取的中點,過點在平面內(nèi)作,再過點在平面內(nèi)作,垂足為點.
在正方體中,平面,平面,,
又,,平面,即,,
同理可證,,則,.
以點為坐標原點,、、所在直線分別為軸、軸、軸建立空間直角坐標系,設(shè),則,,,,.
對于命題①,,,則,則,所以,,命題①正確;
對于命題②,,則平面的一個法向量為,
,令,解得,
所以,存在點使得平面,命題②正確;
對于命題③,,令,
整理得,該方程無解,所以,不存在點使得,命題③錯誤.
故選:D.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知正方形ABCD,E,F分別為AB,CD的中點,將△ADE沿DE折起,使△ACD為等邊三角形,如圖所示,記二面角A-DE-C的大小為.
(1)證明:點A在平面BCDE內(nèi)的射影G在直線EF上;
(2)求角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某商店投入38萬元經(jīng)銷某種紀念品,經(jīng)銷時間共60天,為了獲得更多的利潤,商店將每天獲得的利潤投入到次日的經(jīng)營中,市場調(diào)研表明,該商店在經(jīng)銷這第一產(chǎn)品期間第天的利潤(單位:萬元,),記第天的利潤率,例如.
(1)求的值;
(2)求第天的利潤率;
(3)該商店在經(jīng)銷此紀念品期間,哪一天的利潤率最大?并求該天的利潤率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線的焦點為,直線過點,且與拋物線交于、兩點,.
(1)求的取值范圍;
(2)若,點的坐標為,直線與拋物線的另一個交點為,直線與拋物線的另一個交點為,直線與軸交于點,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知F為拋物線y2=x的焦點,點A,B在該拋物線上且位于x軸的兩側(cè),(其中O為坐標原點),則△ABO與△AFO面積之和的最小值是________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】業(yè)界稱“中國芯”迎來發(fā)展和投資元年,某芯片企業(yè)準備研發(fā)一款產(chǎn)品,研發(fā)啟動時投入資金為A(A為常數(shù))元,之后每年會投入一筆研發(fā)資金,n年后總投入資金記為,經(jīng)計算發(fā)現(xiàn)當(dāng)時,近似地滿足,其中,為常數(shù),.已知3年后總投入資金為研發(fā)啟動是投入資金的3倍,問:
(1)研發(fā)啟動多少年后,總投入資金是研發(fā)啟動時投入資金的8倍;
(2)研發(fā)啟動后第幾年投入的資金最多?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知為等邊三角形,為等腰直角三角形,,平面平面ABD,點E與點D在平面ABC的同側(cè),且,.點F為AD中點,連接EF.
(1)求證:平面ABC;
(2)求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)若,求函數(shù)的極值;
(2)當(dāng) 時,判斷函數(shù)在區(qū)間上零點的個數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標系中,曲線的參數(shù)方程為(為參數(shù)),直線的參數(shù)方程為(為參數(shù)).
(1)若,直線與曲線相交于兩點,求;
(2)若,求曲線上的點到直線的距離的最小值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com