【題目】已知為橢圓的一個(gè)焦點(diǎn),過原點(diǎn)的直線與橢圓交于兩點(diǎn),, 的面積為.

(Ⅰ)求橢圓的離心率;

(Ⅱ)若,過點(diǎn)且不與坐標(biāo)軸垂直的直線交橢圓于兩點(diǎn),線段的垂直平分線與軸交于點(diǎn)求點(diǎn)橫坐標(biāo)的取值范圍.

【答案】(Ⅰ);(Ⅱ)

【解析】試題分析:

()由題意結(jié)合橢圓的對(duì)稱性可知四邊形為矩形,由題意得到關(guān)于a,b,c的方程組,消元整理可得,則橢圓的離心率

()由題意結(jié)合()的結(jié)論可得橢圓的方程為聯(lián)立直線方程與橢圓方程可得,結(jié)合韋達(dá)定理和中點(diǎn)坐標(biāo)公式可得點(diǎn)橫坐標(biāo)為: ,結(jié)合知點(diǎn)橫坐標(biāo)的取值范圍為:

試題解析:

Ⅰ)設(shè)橢圓的焦半距為,左焦點(diǎn)為,,

由橢圓的對(duì)稱性可知四邊形為矩形,

,由消去上式的

,橢圓的離心率

的坐標(biāo)為,由(1)中,

,橢圓的方程為

設(shè)直線的斜率為,直線不與坐標(biāo)軸垂直,故

直線的方程為

方程與橢圓方程聯(lián)立得: ,消得:

由韋達(dá)定理得: ,設(shè)線段中點(diǎn)坐標(biāo)為,則

,

垂直平分線的方程為.

, 點(diǎn)橫坐標(biāo)為:

因?yàn)?/span>,所以,

故點(diǎn)橫坐標(biāo)的取值范圍為:

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知一次函數(shù)上的減函數(shù),,且 f [ f(x)]=16x-3.

(1)求;

(2)若在(-2,3)單調(diào)遞增,求實(shí)數(shù)的取值范圍;

(3)當(dāng)時(shí),有最大值1,求實(shí)數(shù)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】閱讀如圖所示的程序框圖,解答下列問題:

(1)求輸入的的值分別為時(shí),輸出的的值;

(2)根據(jù)程序框圖,寫出函數(shù))的解析式;并求當(dāng)關(guān)于的方程有三個(gè)互不相等的實(shí)數(shù)解時(shí),實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若關(guān)于的不等式恰好有4個(gè)整數(shù)解,則實(shí)數(shù)的取值范圍是(

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐 底面,底面為正方形 , 分別是的中點(diǎn).

(Ⅰ)求證: ;

(Ⅱ)求與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)a,b,c均為正數(shù),且a+b+c=1.證明:
(1) ;
(2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】張師傅欲將一球形的石材工件削砍加工成一圓柱形的新工件,已知原球形工件的半徑為,則張師傅的材料利用率的最大值等于(注:材料利用率=)( )

A. B. C. D.

【答案】C

【解析】設(shè)球半徑為R,圓柱的體積為時(shí)圓柱的體積最大為 ,因此材料利用率= ,選C.

點(diǎn)睛:空間幾何體與球接、切問題的求解方法

求解球與棱柱、棱錐的接、切問題時(shí),一般過球心及接、切點(diǎn)作截面,把空間問題轉(zhuǎn)化為平面圖形與圓的接、切問題,再利用平面幾何知識(shí)尋找?guī)缀沃性亻g的關(guān)系求解.

型】單選題
結(jié)束】
12

【題目】已知拋物線 在點(diǎn)處的切線與曲線 相切,若動(dòng)直線分別與曲線相交于、兩點(diǎn),則的最小值為( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】據(jù)某氣象中心觀察和預(yù)測(cè):發(fā)生于M地的沙塵暴一直向正南方向移動(dòng),其移動(dòng)速度v(km/h)與時(shí)間t(h)的函數(shù)圖象如圖所示.過線段OC上一點(diǎn)T(t,0)作橫軸的垂線l,梯形OABC在直線l左側(cè)部分的面積即時(shí)間t(h)內(nèi)沙塵暴所經(jīng)過的路程s(km)

(1)當(dāng)t4時(shí),求s的值;

(2)st變化的規(guī)律用數(shù)學(xué)關(guān)系式表示出來;

(3)N城位于M地正南方向,且距M650 km,試判斷這場(chǎng)沙塵暴是否會(huì)侵襲到N城,如果會(huì),在沙塵暴發(fā)生后多長時(shí)間它將侵襲到N城?如果不會(huì),請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在三棱錐中,⊥底面,的中點(diǎn).

已知,.求:

(1)三棱錐PABC的體積;

(2)異面直線BCAD所成角的余弦值.

查看答案和解析>>

同步練習(xí)冊(cè)答案