【題目】以下說法正確的有( )
(1)y=x+ (x∈R)最小值為2;
(2)a2+b2≥2ab對a,b∈R恒成立;
(3)a>b>0且c>d>0,則必有ac>bd;
(4)命題“x∈R,使得x2+x+1≥0”的否定是“x∈R,使得x2+x+1≥0”;
(5)實數(shù)x>y是 < 成立的充要條件;
(6)設(shè)p,q為簡單命題,若“p∨q”為假命題,則“¬p∨¬q”也為假命題.
A.2個
B.3個
C.4個
D.5個
【答案】A
【解析】解:(1)當(dāng)x<0時函數(shù) ,無最小值,故(1)錯誤;(2)∵a2+b2﹣2ab=(a﹣b)2≥0對任意實數(shù)a,b都成立,∴a2+b2≥2ab對任意實數(shù)a,b恒成立,故(2)正確;(3)根據(jù)不等式的性質(zhì)易知(3)正確;(4)根據(jù)特稱命題的否定形式知,命題“x∈R,使得x2+x+1≥0”的否定應(yīng)為“x∈R,x2+x+1<0”,故(4)錯誤;(5)取x=1,y=﹣1滿足x>y,但 ,故(5)錯誤;(6)若p∨q為假命題,則p,q都為假命題,所以¬p,¬q都為真命題,所以¬p∨¬q為真命題,故(6)錯誤.
綜上可得正確命題為(2)(3).
故選A.
【考點精析】解答此題的關(guān)鍵在于理解復(fù)合命題的真假的相關(guān)知識,掌握“或”、 “且”、 “非”的真值判斷:“非p”形式復(fù)合命題的真假與F的真假相反;“p且q”形式復(fù)合命題當(dāng)P與q同為真時為真,其他情況時為假;“p或q”形式復(fù)合命題當(dāng)p與q同為假時為假,其他情況時為真,以及對命題的真假判斷與應(yīng)用的理解,了解兩個命題互為逆否命題,它們有相同的真假性;兩個命題為互逆命題或互否命題,它們的真假性沒有關(guān)系.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】現(xiàn)對某市工薪階層關(guān)于“樓市限購令”的態(tài)度進行調(diào)查,隨機抽調(diào)了50人,他們月收入的頻數(shù)分布及對“樓市限購令”贊成人數(shù)如下表.
月收入(單位百元) | [15,25 | [25,35 | [35,45 | [45,55 | [55,65 | [65,75 |
頻數(shù) | 5 | 10 | 15 | 10 | 5 | 5 |
贊成人數(shù) | 4 | 8 | 12 | 5 | 2 | 1 |
(1)由以上統(tǒng)計數(shù)據(jù)求下面22列聯(lián)表中的的值,并問是否有99%的把握認(rèn)為“月收入以5500為分界點對“樓市限購令” 的態(tài)度有差異;
月收入低于55百元的人數(shù) | 月收入不低于55百元的人數(shù) | 合計 | |
贊成 | a | b | |
不贊成 | c | d | |
合計 | 50 |
(2)若對在[55,65)內(nèi)的被調(diào)查者中隨機選取兩人進行追蹤調(diào)查,記選中的2人中不贊成“樓市限購令”的人數(shù)為,求的概率.
附:,
0.10 | 0.05 | 0.025 | 0.010 | 0.001 | |
2.706 | 3.841 | 5.024 | 6.635 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,角A,B,C所對的邊分別為a,b,c,且3cosBcosC+1=3sinBsinC+cos2A.
(1)求角A的大。
(2)若 ,求b+c的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線的焦點F,C上一點到焦點的距離為5.
(1)求C的方程;
(2)過F作直線l,交C于A,B兩點,若直線AB中點的縱坐標(biāo)為,求直線l的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線的焦點F,C上一點到焦點的距離為5.
(1)求C的方程;
(2)過F作直線l,交C于A,B兩點,若直線AB中點的縱坐標(biāo)為,求直線l的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=lnx﹣a(x﹣1),其中a>0.
(Ⅰ)若函數(shù)f(x)在(0,+∞)上有極大值0,求a的值;(提示:當(dāng)且僅當(dāng)x=1時,lnx=x﹣1);
(Ⅱ)令F(x)=f(x)+a(x﹣1)+ (0<x≤3),其圖象上任意一點P(x0 , y0)處切線的斜率k≤ 恒成立,求實數(shù)a的取值范圍;
(Ⅲ)討論并求出函數(shù)f(x)在區(qū)間 上的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)是定義在(﹣4,4)上的奇函數(shù),滿足f(2)=1,當(dāng)﹣4<x≤0時,有f(x)=.
(1)求實數(shù)a,b的值;
(2)若f(m+1)+>0.求m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=lnx﹣mx(m∈R).
(1)若曲線y=f(x)過點P(1,﹣1),求曲線y=f(x)在點P處的切線方程;
(2)求函數(shù)f(x)在區(qū)間[1,e]上的最大值;
(3)若函數(shù)f(x)有兩個不同的零點x1 , x2 , 求證:x1x2>e2 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知點列An(an , bn)(n∈N*)均為函數(shù)y=ax(a>0,a≠1)的圖象上,點列Bn(n,0)滿足|AnBn|=|AnBn+1|,若數(shù)列{bn}中任意連續(xù)三項能構(gòu)成三角形的三邊,則a的取值范圍為( )
A.(0, )∪( ,+∞)
B.( ,1)∪(1, )
C.(0, )∪( ,+∞)
D.( ,1)∪(1, )
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com