設(shè)向量為直角坐標(biāo)平面內(nèi)x軸,y軸正方向上的單位向量.若向量,且.(1)求滿足上述條件的點的軌跡方程;(2)設(shè),問是否存在常數(shù),使得恒成立?證明你的結(jié)論.
(1)  (2)略
(1)由條件可知:.
由雙曲線定義,得點P的軌跡方程:.…………………4分
(2)在第一象限內(nèi)作,此時  .………………………………….……6分
以下證明當(dāng)PFx軸不垂直且P在第一象限時,恒成立.

,得.
代入上式并化簡得……10分

由對稱性知,當(dāng)P在第四象限時,同樣成立.
故存在常數(shù),使得恒成立.………………….………12分
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

方程所表示的曲線是 ( )
A.焦點在x軸上的橢圓B.焦點在y軸上的橢圓
C.焦點在x軸上的雙曲線D.焦點在 y軸上的雙曲線

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知拋物線,直線兩點,是線段的中點,過軸的垂線交于點.(1)證明:拋物線在點處的切線與平行;(2)是否存在實數(shù)使NANB,若存在,求的值;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分13分)橢圓的左、右焦點分別為F1、F2,過F1的直線l與橢圓交于A、B兩點.(Ⅰ)如果點A在圓c為橢圓的半焦距)上,且|F1A|=c,求橢圓的離心率;(Ⅱ)若函數(shù)的圖象,無論m為何值時恒過定點(b,a),求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,已知圓Ox2+y2=2交x軸于AB兩點,點P(-1,1)為圓O上一點.曲線C是以AB為長軸,離心率為的橢圓,點F為其右焦點.

過原點O作直線PF的垂線交橢圓C的右準(zhǔn)線l于點Q
(1)求橢圓C的標(biāo)準(zhǔn)方程;(2)證明:直線PQ與圓O相切.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本題滿分14分)設(shè)直線. 若直線l與曲線S同時滿足下列兩個條件:①直線l與曲線S相切且至少有兩個切點;②對任意xR都有. 則稱直線l為曲線S的“上夾線”.(Ⅰ)已知函數(shù).求證:為曲線的“上夾線”.
(Ⅱ)觀察下圖:
          
根據(jù)上圖,試推測曲線的“上夾線”的方程,并給出證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

在平面直角坐標(biāo)系xOy中,動點P到兩點(-
3
,0),(
3
,0)的距離之和等于4,設(shè)點P的軌跡為曲線C,直線l過點E(-1,0)且與曲線C交于A,B兩點.
(1)求曲線C的軌跡方程;
(2)若AB中點橫坐標(biāo)為-
1
2
,求直線AB的方程;
(3)是否存在△AOB面積的最大值,若存在,求出△AOB的面積;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知點,且有,則點的軌跡是(    )
A.橢圓B.雙曲線C.線段D.兩射線

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

(陜西理,4)過原點且傾斜角為的直線被圓學(xué)所截得的弦長為科網(wǎng)
A.B.2C.D.2

查看答案和解析>>

同步練習(xí)冊答案