【題目】在平面直角坐標系中,橫坐標、縱坐標均為整數(shù)的點稱為整點,如果函數(shù)f(x)的圖象恰好通過n()個整點,則稱函數(shù)f(x)為n階整點函數(shù)。有下列函數(shù):
① ② ③ ④
其中是一階整點的是( )
A. ①②③④ B. ①③④ C. ④ D. ①④
【答案】D
【解析】
根據(jù)新定義的“一階整點函數(shù)”的要求,對于四個函數(shù)一一加以分析,它們的圖象是否通過一個整點,從而選出答案即可.
對于函數(shù),它只通過一個整點(1,2),故它是一階整點函數(shù);
對于函數(shù),當x∈Z時,一定有g(shù)(x)=x3∈Z,即函數(shù)g(x)=x3通過無數(shù)個整點,它不是一階整點函數(shù);
對于函數(shù),當x=0,-1,-2,時,h(x)都是整數(shù),故函數(shù)h(x)通過無數(shù)個整點,它不是一階整點函數(shù);
對于函數(shù),它只通過一個整點(1,0),故它是一階整點函數(shù).
故選:D.
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=ax2+1(a>0),g(x)=x3+bx
(1)若曲線y=f(x)與曲線y=g(x)在它們的交點(1,c)處具有公共切線,求a、b的值;
(2)當a2=4b時,求函數(shù)f(x)+g(x)的單調(diào)區(qū)間,并求其在區(qū)間(﹣∞,﹣1)上的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=x+alnx在x=1處的切線與直線x+2y=0垂直,函數(shù)g(x)=f(x)+ x2﹣bx.
(1)求實數(shù)a的值;
(2)若函數(shù)g(x)存在單調(diào)遞減區(qū)間,求實數(shù)b的取值范圍;
(3)設(shè)x1 , x2(x1<x2)是函數(shù)g(x)的兩個極值點,若b≥ ,求g(x1)﹣g(x2)的最小值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù), (為自然對數(shù)的底數(shù)).
(1)討論函數(shù)的單調(diào)性;
(2)當時, 恒成立,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知兩動圓F1:(x+ )2+y2=r2和F2:(x﹣ )2+y2=(4﹣r)2(0<r<4),把它們的公共點的軌跡記為曲線C,若曲線C與y軸的正半軸的交點為M,且曲線C上的相異兩點A,B滿足: =0.
(1)求曲線C的方程;
(2)證明直線AB恒經(jīng)過一定點,并求此定點的坐標;
(3)求△ABM面積S的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=log2x+ ,若x1∈(1,2),x2∈(2,+∞),則( )
A.f(x1)<0,f(x2)<0
B.f(x1)<0,f(x2)>0
C.f(x1)>0,f(x2)<0
D.f(x1)>0,f(x2)>0
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設(shè)數(shù)列{an}的前n項和為Sn , 滿足(1﹣q)Sn+qan=1,且q(q﹣1)≠0.
(1)求{an}的通項公式;
(2)若S3 , S9 , S6成等差數(shù)列,求證:a2 , a8 , a5成等差數(shù)列.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)= x2﹣(a2﹣a)lnx﹣x(a<0),且函數(shù)f(x)在x=2處取得極值.
(1)求曲線y=f(x)在點(1,f(1))處的切線方程;
(2)若x∈[1,e],f(x)﹣m≤0成立,求實數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】中石化集團獲得了某地深海油田塊的開采權(quán),集團在該地區(qū)隨機初步勘探了部分幾口井,取得了地質(zhì)資料.進入全面勘探時期后,集團按網(wǎng)絡(luò)點米布置井位進行全面勘探.由于勘探一口井的費用很高,如果新設(shè)計的井位與原有井位重合或接近,便利用舊井的地質(zhì)資料,不必打這口新井,以節(jié)約勘探費用,勘探初期數(shù)據(jù)資料見下表:
井號 | 1 | 2 | 3 | 4 | 5 | 6 |
坐標(x,y)(km) | (2,30) | (4,40) | (5,60) | (6,50) | (8,70) | (1,y) |
鉆探深度(km) | 2 | 4 | 5 | 6 | 8 | 10 |
出油量(L) | 40 | 70 | 110 | 90 | 160 | 205 |
(Ⅰ)1~6號舊井位置線性分布,借助前5組數(shù)據(jù)求得回歸直線方程為y=6.5x+a,求a,并估計y的預報值;
(Ⅱ)現(xiàn)準備勘探新井7(1,25),若通過1、3、5、7號井計算出的,的值(,精確到0.01)與(I)中b,a的值差不超過10%,則使用位置最接近的已有舊井6(1,y),否則在新位置打開,請判斷可否使用舊井?(參考公式和計算結(jié)果:,,,)
(Ⅲ)設(shè)出油量與勘探深度的比值k不低于20的勘探井稱為優(yōu)質(zhì)井,那么在原有6口井中任意勘探4口井,求勘探優(yōu)質(zhì)井數(shù)X的分布列與數(shù)學期望.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com