【題目】已知橢圓E: (a>b>0)的離心率 ,且點(diǎn) 在橢圓E上.
(Ⅰ)求橢圓E的方程;
(Ⅱ)直線l與橢圓E交于A、B兩點(diǎn),且線段AB的垂直平分線經(jīng)過(guò)點(diǎn) .求△AOB(O為坐標(biāo)原點(diǎn))面積的最大值.

【答案】解:(Ⅰ)由已知,e= = ,a2﹣b2=c2 , ∵點(diǎn) 在橢圓上,
,解得a=2,b=1.
∴橢圓方程為 ;
(Ⅱ)設(shè)A(x1 , y1),B(x2 , y2),
∵AB的垂直平分線過(guò)點(diǎn) ,∴AB的斜率k存在.
當(dāng)直線AB的斜率k=0時(shí),x1=﹣x2 , y1=y2 ,
∴SAOB= 2|x||y|=|x|
= =1,
當(dāng)且僅當(dāng)x12=4﹣x12 , 取得等號(hào),
時(shí),(SAOBmax=1;
當(dāng)直線AB的斜率k≠0時(shí),設(shè)l:y=kx+m(m≠0).
消去y得:(1+4k2)x2+8kmx+4m2﹣4=0,
由△>0可得4k2+1>m2①,
x1+x2=﹣ ,x1x2= ,可得 ,
,
∴AB的中點(diǎn)為 ,
由直線的垂直關(guān)系有 ,化簡(jiǎn)得1+4k2=﹣6m②
由①②得﹣6m>m2 , 解得﹣6<m<0,
又O(0,0)到直線y=kx+m的距離為 ,


= ,
∵﹣6<m<0,∴m=﹣3時(shí),
由m=﹣3,∴1+4k2=18,解得
時(shí),(SAOBmax=1;
綜上:(SAOBmax=1.
【解析】(Ⅰ)運(yùn)用離心率公式和點(diǎn)滿足橢圓方程,解方程可得a,b,進(jìn)而得到橢圓方程;(Ⅱ)設(shè)A(x1 , y1),B(x2 , y2),討論直線AB的斜率為0和不為0,聯(lián)立直線方程和橢圓方程,運(yùn)用韋達(dá)定理和弦長(zhǎng)公式,結(jié)合基本不等式和二次函數(shù)的最值的求法,可得面積的最大值.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知直線l與拋物線交于點(diǎn)A,B兩點(diǎn),與x軸交于點(diǎn)M,直線OA,OB的斜率之積為.

(1)證明:直線AB過(guò)定點(diǎn);

(2)以AB為直徑的圓P交x軸于E,F(xiàn)兩點(diǎn),O為坐標(biāo)原點(diǎn),求|OE||OF|的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),

(1)若的解集為,求的值;

(2)求函數(shù)上的最小值

(3)對(duì)于,使成立,求實(shí)數(shù)的取值范圍

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知直線l過(guò)點(diǎn)A(0,4),且在兩坐標(biāo)軸上的截距之和為1.

(Ⅰ)求直線l的方程;

(Ⅱ)若直線l1與直線l平行,且l1l間的距離為2,求直線l1的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,建立平面直角坐標(biāo)系,x軸在地平面上,y軸垂直于地平面,單位長(zhǎng)度為1 km,某炮位于原點(diǎn).已知炮彈發(fā)射后的軌跡在方程ykx (1+k2)x2(k>0)表示的曲線上,其中k與發(fā)射方向有關(guān).炮的射程是指炮彈落地點(diǎn)的橫坐標(biāo).則炮的最大射程為(  )

A. 20 km B. 10 km

C. 5 km D. 15 km

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】理科競(jìng)賽小組有9名女生、12名男生,從中隨機(jī)抽取一個(gè)容量為7的樣本進(jìn)行分析.
(Ⅰ)如果按照性別比例分層抽樣,可以得到多少個(gè)不同的樣本?(寫出算式即可)
(Ⅱ)如果隨機(jī)抽取的7名同學(xué)的物理、化學(xué)成績(jī)(單位:分)對(duì)應(yīng)如表:

學(xué)生序號(hào)

1

2

3

4

5

6

7

物理成績(jī)

65

70

75

81

85

87

93

化學(xué)成績(jī)

72

68

80

85

90

86

91

規(guī)定85分以上(包括85份)為優(yōu)秀,從這7名同學(xué)中再抽取3名同學(xué),記這3名同學(xué)中物理和化學(xué)成績(jī)均為優(yōu)秀的人數(shù)為X,求隨機(jī)變量X的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在數(shù)列中,已知,對(duì)于任意的,有.

(1)求數(shù)列的通項(xiàng)公式.

(2)若數(shù)列滿足,求數(shù)列的通項(xiàng)公式.

(3)設(shè),是否存在實(shí)數(shù),當(dāng)時(shí),恒成立?若存在,求實(shí)數(shù)的取值范圍;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】(本小題滿分12分)在中,角所對(duì)的邊分別為,已知,

1)求的值;

2)求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知是橢圓與拋物線的一個(gè)公共點(diǎn),且橢圓與拋物線具有一個(gè)相同的焦點(diǎn)

(1)求橢圓及拋物線的方程;

(2)設(shè)過(guò)且互相垂直的兩動(dòng)直線,與橢圓交于兩點(diǎn),與拋物線交于兩點(diǎn),求四邊形面積的最小值

查看答案和解析>>

同步練習(xí)冊(cè)答案