【題目】設(shè)函數(shù)為的導(dǎo)函數(shù)
(1)若曲線與曲線相切,求實(shí)數(shù)的值;
(2)設(shè)函數(shù)若為函數(shù)的極大值,且
①求的值;
②求證:對于.
【答案】(1).(2)①k=1,②見證明
【解析】
(1)由題得 曲線在點(diǎn)處的切線方程為,得解方程求出m的值.(2) ①,利用導(dǎo)數(shù)求出,易得函數(shù)在區(qū)間是減函數(shù),根據(jù)單調(diào)性求出k的值. ②利用導(dǎo)數(shù)求得,再證明.
(1) ,
設(shè)切點(diǎn)為,則曲線在點(diǎn)處的切線方程為,
即,
結(jié)合題設(shè)得
所以
所以實(shí)數(shù)的值為.
(2)①:,
所以,
,
由,得,
即兩根為,
,
,因此,
0 | + | 0 | |||
極小值 | 極大值 |
結(jié)合題設(shè),有
,
易知函數(shù)在區(qū)間是減函數(shù),
因此,時(shí),,即
.
②證明:由由①,,
所以,
所以,
所以在是減函數(shù),
所以時(shí),,
由①,時(shí),,
所以,,
即對于成立.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓E: ,對于任意實(shí)數(shù)k,下列直線被橢圓E截得的弦長與l:y=kx+1被橢圓E截得的弦長不可能相等的是( )
A. kx+y+k=0 B. kx-y-1=0
C. kx+y-k=0 D. kx+y-2=0
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐中,平面,, ,,,,為側(cè)棱上一點(diǎn).
(1)若,求證:平面;
(2)求證:平面平面;
(3)在側(cè)棱上是否存在點(diǎn),使得平面? 若存在,求出線段的長;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系中,曲線C:y=與直線(>0)交與M,N兩點(diǎn),
(Ⅰ)當(dāng)k=0時(shí),分別求C在點(diǎn)M和N處的切線方程;
(Ⅱ)y軸上是否存在點(diǎn)P,使得當(dāng)k變動(dòng)時(shí),總有∠OPM=∠OPN?說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】是定義在R上的函數(shù),對∈R都有,且當(dāng)>0時(shí),<0,且=1.
(1)求的值;
(2)求證:為奇函數(shù);
(3)求在[-2,4]上的最值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形區(qū)域ABCD的A,C兩點(diǎn)處各有一個(gè)通信基站,假設(shè)其信號覆蓋范圍分別是扇形區(qū)域ADE和扇形區(qū)域CBF(該矩形區(qū)域內(nèi)無其他信號來源,基站工作正常).若在該矩形區(qū)域內(nèi)隨機(jī)地選一地點(diǎn),則該地點(diǎn)無信號的概率是 _________ .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為響應(yīng)國家提出的“大眾創(chuàng)業(yè),萬眾創(chuàng)新”的號召,小李同學(xué)大學(xué)畢業(yè)后,決定利用所學(xué)專業(yè)進(jìn)行自主創(chuàng)業(yè)。經(jīng)過市場調(diào)查,生產(chǎn)某小型電子產(chǎn)品需投入年固定成本為5萬元,每年生產(chǎn)萬件,需另投入流動(dòng)成本為萬元,且,每件產(chǎn)品售價(jià)為10元。經(jīng)市場分析,生產(chǎn)的產(chǎn)品當(dāng)年能全部售完。
(1)寫出年利潤(萬元)關(guān)于年產(chǎn)量(萬件)的函數(shù)解析式;
(注:年利潤=年銷售收入-固定成本-流動(dòng)成本)
(2)年產(chǎn)量為多少萬件時(shí),小李在這一產(chǎn)品的生產(chǎn)中所獲利潤最大?最大利潤是多少?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的離心率為,過右焦點(diǎn)作垂直于橢圓長軸的直線交橢圓于兩點(diǎn),且為坐標(biāo)原點(diǎn).
(1)求橢圓的方程;
(2) 設(shè)直線與橢圓相交于兩點(diǎn),若.
①求的值;
②求的面積的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】3名男生,4名女生,按照不同的要求排隊(duì),求不同的排隊(duì)方案的方法種數(shù).(要求每問要有適當(dāng)?shù)姆治鲞^程,列式并算出答案)
(1)選其中5人排成一排;
(2)排成前后兩排,前排3人,后排4人;
(3)全體站成一排,男、女各站在一起;
(4)全體站成一排,男生不能站在一起;
(5)全體站成一排,甲不站排頭也不站排尾.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com