【題目】己知函數(shù)f(x)=(x﹣l)(log3a)2﹣6(log3a)x+x+l在x∈[0,l]內(nèi)恒為正值,則a的取值范圍是( )
A.﹣1<a<
B.a<
C.a>
D. <a<
【答案】D
【解析】解:當(dāng)a=1時(shí),f(x)=x+1在區(qū)間[0,1]上的函數(shù)值恒為正實(shí)數(shù);
當(dāng)a≠1時(shí),要使函數(shù)f(x)=(x﹣1)(log3a)2﹣6(log3a)x+x+1在區(qū)間[0,1]上的函數(shù)值恒為正實(shí)數(shù),
則有 ,即 ,解得 .
故選:D.
由于一次項(xiàng)系數(shù)含有參數(shù),必須分類討論.當(dāng)a=1時(shí),顯然成立;當(dāng)a≠1時(shí),要使函數(shù)f(x)=(x﹣1)(log3a)2﹣6(log3a)x+x+1在區(qū)間[0,1]上的函數(shù)值恒為正實(shí)數(shù),則有 ,從而可求a的取值范圍.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】將直角三角形沿斜邊上的高折成的二面角,已知直角邊, ,那么下面說法正確的是( )
A. 平面平面
B. 四面體的體積是
C. 二面角的正切值是
D. 與平面所成角的正弦值是
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖幾何體中,矩形所在平面與梯形所在平面垂直,且, , , 為的中點(diǎn).
(1)證明: 平面;
(2)證明: 平面.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】第十二屆全國人名代表大會(huì)第五次會(huì)議和政協(xié)第十二屆全國委員會(huì)第五次會(huì)議(簡稱兩會(huì))分別于2017年3月5日和3月3日在北京開幕,某高校學(xué)生會(huì)為了解該校學(xué)生對全國兩會(huì)的關(guān)注情況,隨機(jī)調(diào)查了該校200名學(xué)生,并將這200名學(xué)生分為對兩會(huì)“比較關(guān)注”與“不太關(guān)注”兩類,已知這200名學(xué)生中男生比女生多20人,對兩會(huì)“比較關(guān)注”的學(xué)生中男生人數(shù)與女生人數(shù)之比為,對兩會(huì)“不太關(guān)注”的學(xué)生中男生比女生少5人.
(1)該校學(xué)生會(huì)從對兩會(huì)“比較關(guān)注”的學(xué)生中根據(jù)性別進(jìn)行分層抽樣,從中抽取7人,再從這7人中隨機(jī)選出2人參與兩會(huì)宣傳活動(dòng),求這2人全是男生的概率.
(2)根據(jù)題意建立列聯(lián)表,并判斷是否有99%的把握認(rèn)為男生與女生對兩會(huì)的關(guān)注有差異?
附: ,其中.
0.100 | 0.050 | 0.010 | 0.001 | |
2.706 | 3.841 | 6.635 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某企業(yè)生產(chǎn)的新產(chǎn)品必須先靠廣告打開銷路,該產(chǎn)品廣告效應(yīng)y(單位:元)是產(chǎn)品的銷售額與廣告費(fèi)x(單位:元)之間的差,如果銷售額與廣告費(fèi)x的算術(shù)平方根成正比,根據(jù)對市場的抽樣調(diào)查,每付出100元的廣告費(fèi),所得銷售額是1000元. (Ⅰ)求出廣告效應(yīng)y與廣告費(fèi)x之間的函數(shù)關(guān)系式;
(Ⅱ)該企業(yè)投入多少廣告費(fèi)才能獲得最大的廣告效應(yīng)?是不是廣告費(fèi)投入越多越好?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)存在兩個(gè)極值點(diǎn).
(Ⅰ)求實(shí)數(shù)a的取值范圍;
(Ⅱ)設(shè)和分別是的兩個(gè)極值點(diǎn)且,證明: .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】王明參加某衛(wèi)視的闖關(guān)活動(dòng),該活動(dòng)共3關(guān).設(shè)他通過第一關(guān)的概率為0.8,通過第二、第三關(guān)的概率分別為p,q,其中,并且是否通過不同關(guān)卡相互獨(dú)立.記ξ為他通過的關(guān)卡數(shù),其分布列為:
ξ | 0 | 1 | 2 | 3 |
P | 0.048 | a | b | 0.192 |
(Ⅰ)求王明至少通過1個(gè)關(guān)卡的概率;
(Ⅱ)求p,q的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓C: 的右焦點(diǎn)為F,右頂點(diǎn)為A,設(shè)離心率為e,且滿足,其中O為坐標(biāo)原點(diǎn).
(Ⅰ)求橢圓C的方程;
(Ⅱ)過點(diǎn)的直線l與橢圓交于M,N兩點(diǎn),求△OMN面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】矩形中, , ,點(diǎn)為中點(diǎn),沿將折起至,如下圖所示,點(diǎn)在面的射影落在上.
(Ⅰ)求證: ;
(Ⅱ)求二面角的余弦值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com